Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TMSB4Y restrains sphingomyelin synthesis via de novo purine synthesis to exert a tumor suppressor function in male esophageal squamous cell carcinoma

Abstract

Y chromosome genes play a vital role in sex difference of cancer. The dysregulation and functional implications of Y chromosome genes in esophageal squamous cell carcinoma (ESCC) remains elusive. Here, we analyze the Y chromosome gene signature and identify TMSB4Y as an emerging prognostic predictor in male ESCC. Functional analyses show that TMSB4Y inhibits the proliferation, invasion and metastasis of male ESCC cells. Mechanistically, we demonstrate that TMSB4Y interacts with PAICS, wherein TMSB4Y disrupts the formation of the PAICS octamer to inhibit purine de novo synthesis, leading to a decrease in the AMP/ATP ratio, subsequently impeding AMPK phosphorylation. Furthermore, we uncover a regulatory cascade orchestrated by the TMSB4Y/PAICS-AMPK axis, which exerts a suppressive effect on sphingomyelin metabolism by inhibiting the expression of sphingomyelin synthases (SMSs). Notably, Malabaricone C, an inhibitor of SMS1 and SMS2, effectively suppresses male ESCC cell proliferation and xenograft tumor growth. Collectively, these findings reveal the regulation of sphingomyelin metabolism by TMSB4Y/PAICS-AMPK axis and underscore the potential of targeting SMSs as a promising therapeutic approach for the treatment of male ESCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TMSB4Y is a potential tumor suppressor in male ESCC.
Fig. 2: TMSB4Y inhibits male ESCC proliferation.
Fig. 3: TMSB4Y exerts a tumor-suppressive function through its interaction with PAICS.
Fig. 4: TMSB4Y prevents the octamerization of PAICS to inhibit purine de novo synthesis.
Fig. 5: TMSB4Y-PAICS interaction decreases sphingomyelin via SMSs in male ESCC cells.
Fig. 6: SMSs are potential targets for male ESCC therapy.

Similar content being viewed by others

Data availability

The lipidomic data were upload to MetaboLight with accession number of MTBLS9834.

References

  1. Arnold M, Ferlay J, van Berge Henegouwen MI, Soerjomataram I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut. 2020;69:1564–71.

    Article  PubMed  Google Scholar 

  2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–3.

    Article  PubMed  Google Scholar 

  3. Han B, Zheng R, Zeng H, Wang S, Sun K, Chen R, et al. Cancer incidence and mortality in China, 2022. J Natl Cancer Cent. 2024;4:47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang D, Tang L, Wu Y, Fan C, Zhang S, Xiang B, et al. Abnormal X chromosome inactivation and tumor development. Cell Mol Life Sci. 2020;77:2949–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spatz A, Borg C, Feunteun J. X-chromosome genetics and human cancer. Nat Rev Cancer. 2004;4:617–29.

    Article  CAS  PubMed  Google Scholar 

  6. Kido T, Lau YF. Roles of the Y chromosome genes in human cancers. Asian J Androl. 2015;17:373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lau YC, Li Y, Kido T. Battle of the sexes: contrasting roles of testis-specific protein Y-encoded (TSPY) and TSPX in human oncogenesis. Asian J Androl. 2019;21:260–9.

    Article  CAS  PubMed  Google Scholar 

  8. Shi B, Li W, Song Y, Wang Z, Ju R, Ulman A, et al. UTX condensation underlies its tumour-suppressive activity. Nature. 2021;597:726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdel-Hafiz HA, Schafer JM, Chen X, Xiao T, Gauntner TD, Li Z, et al. Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature. 2023;619:624–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  11. Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: new perspectives and emerging mechanisms. Dev Cell. 2021;56:1363–93.

    Article  CAS  PubMed  Google Scholar 

  12. Tallima H, Azzazy HME, El Ridi R. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis. 2021;20:150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abercrombie M, Ambrose EJ. The surface properties of cancer cells: a review. Cancer Res 1962;22:525–48.

    CAS  PubMed  Google Scholar 

  14. Peetla C, Vijayaraghavalu S, Labhasetwar V. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Adv Drug Deliv Rev. 2013;65:1686–98.

    Article  CAS  PubMed  Google Scholar 

  15. Materon EM, Nascimento GF, Shimizu FM, Camara AS, Sandrino B, Faria RC, et al. Role of sphingomyelin on the interaction of the anticancer drug gemcitabine hydrochloride with cell membrane models. Colloids Surf B Biointerfaces. 2020;196:111357.

    Article  CAS  PubMed  Google Scholar 

  16. Nicolson GL. Cell membrane fluid-mosaic structure and cancer metastasis. Cancer Res. 2015;75:1169–76.

    Article  CAS  PubMed  Google Scholar 

  17. Trefts E, Shaw RJ. AMPK: restoring metabolic homeostasis over space and time. Mol Cell. 2021;81:3677–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24:255–72.

    Article  CAS  PubMed  Google Scholar 

  19. Soares AS, Costa VM, Diniz C, Fresco P. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways. Basic Clin Pharmacol Toxicol. 2015;116:25–36.

    Article  CAS  PubMed  Google Scholar 

  20. Wong CC, Qian Y, Li X, Xu J, Kang W, Tong JH, et al. SLC25A22 promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synthesis of aspartate. Gastroenterology. 2016;151:945–60.e6.

    Article  CAS  PubMed  Google Scholar 

  21. Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 2016;24:685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Du B, Zhang Z, Di W, Xu W, Yang L, Zhang S, et al. PAICS is related to glioma grade and can promote glioma growth and migration. J Cell Mol Med. 2021;25:7720–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Agarwal S, Chakravarthi B, Behring M, Kim HG, Chandrashekar DS, Gupta N, et al. PAICS, a purine nucleotide metabolic enzyme, is involved in tumor growth and the metastasis of colorectal cancer. Cancers. 2020;12:772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Agarwal S, Chakravarthi B, Kim HG, Gupta N, Hale K, Balasubramanya SAH, et al. PAICS, a de novo purine biosynthetic enzyme, is overexpressed in pancreatic cancer and is involved in its progression. Transl Oncol. 2020;13:100776.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang N, Xu C, Deng L, Li X, Bian Z, Zhang Y, et al. PAICS contributes to gastric carcinogenesis and participates in DNA damage response by interacting with histone deacetylase 1/2. Cell Death Dis. 2020;11:507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li SX, Tong YP, Xie XC, Wang QH, Zhou HN, Han Y, et al. Octameric structure of the human bifunctional enzyme PAICS in purine biosynthesis. J Mol Biol. 2007;366:1603–14.

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Lan Z, Liao W, Horner JW, Xu X, Liu J, et al. Histone demethylase KDM5D upregulation drives sex differences in colon cancer. Nature. 2023;619:632–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qi M, Pang J, Mitsiades I, Lane AA, Rheinbay E. Loss of chromosome Y in primary tumors. Cell. 2023;186:3125–3136.e11.

    Article  Google Scholar 

  29. Goswami MT, Chen G, Chakravarthi BV, Pathi SS, Anand SK, Carskadon SL, et al. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer. Oncotarget. 2015;6:23445–61.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sun W, Zhang K, Zhang X, Lei W, Xiao T, Ma J, et al. Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization. Cancer Lett. 2004;212:83–93.

    Article  CAS  PubMed  Google Scholar 

  31. Meng M, Chen Y, Jia J, Li L, Yang S. Knockdown of PAICS inhibits malignant proliferation of human breast cancer cell lines. Biol Res. 2018;51:24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gallenne, Ross T, Visser KN, Salony NL, Desmet CJ, Wittner BS, et al. Systematic functional perturbations uncover a prognostic genetic network driving human breast cancer. Oncotarget. 2017;8:20572–87.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chakravarthi BV, Goswami MT, Pathi SS, Dodson M, Chandrashekar DS, Agarwal S, et al. Expression and role of PAICS, a de novo purine biosynthetic gene in prostate cancer. Prostate. 2017;77:10–21.

    Article  CAS  PubMed  Google Scholar 

  34. Xie LY, Huang HY, Fang T, Liang JY, Hao YL, Zhang XJ, et al. A prognostic survival model of pancreatic adenocarcinoma based on metabolism-related gene expression. Front Genet. 2022;13:804190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamauchi T, Miyawaki K, Semba Y, Takahashi M, Izumi Y, Nogami J, et al. Targeting leukemia-specific dependence on the de novo purine synthesis pathway. Leukemia. 2022;36:383–93.

    Article  CAS  PubMed  Google Scholar 

  36. Chang W, Luo Q, Wu X, Nan Y, Zhao P, Zhang L, et al. OTUB2 exerts tumor-suppressive roles via STAT1-mediated CALML3 activation and increased phosphatidylserine synthesis. Cell Rep. 2022;41:111561.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou X, Huang F, Ma G, Wei W, Wu N, Liu Z. Dysregulated ceramides metabolism by fatty acid 2-hydroxylase exposes a metabolic vulnerability to target cancer metastasis. Signal Transduct Target Ther, 2022;7:370.

    Article  CAS  PubMed  Google Scholar 

  38. Rao H, Liu C, Wang A, Ma C, Xu Y, Ye T, et al. SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer. Nat Commun 2023;14:7572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Long X, Liu X, Deng T, Chen J, Lan J, Zhang S, et al. LARP6 suppresses colorectal cancer progression through ZNF267/SGMS2-mediated imbalance of sphingomyelin synthesis. J Exp Clin Cancer Res. 2023;42:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng K, Chen Z, Feng H, Chen Y, Zhang C, Yu J, et al. Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin. Cell Death Dis. 2019;10:157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bilal F, Montfort A, Gilhodes J, Garcia V, Riond J, Carpentier S, et al. Sphingomyelin Synthase 1 (SMS1) downregulation is associated with sphingolipid reprogramming and a worse prognosis in melanoma. Front Pharmacol, 2019;10:443.

    Article  CAS  PubMed  Google Scholar 

  42. Newton J, Lima S, Maceyka M, Spiegel S. Revisiting the sphingolipid rheostat: Evolving concepts in cancer therapy. Exp Cell Res. 2015;333:195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasko G, Cronstein BN. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 2004;25:33–9.

    Article  CAS  PubMed  Google Scholar 

  44. Csoka B, Selmeczy Z, Koscso B, Nemeth ZH, Pacher P, Murray PJ, et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 2012;26:376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112:1822–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chalmin F, Mignot G, Bruchard M, Chevriaux A, Vegran F, Hichami A, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 2012;36:362–73.

    Article  CAS  PubMed  Google Scholar 

  47. Raskovalova T, Huang X, Sitkovsky M, Zacharia LC, Jackson EK, Gorelik E. Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J Immunol. 2005;175:4383–91.

    Article  CAS  PubMed  Google Scholar 

  48. Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C, et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci USA. 2013;110:14711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82188102, 82030089), National Key R&D Program of China (2020YFA0803303, 2022YFC3401003), CAMS Innovation Fund for Medical Sciences (2021-I2M-1-018, 2023-I2M-2-004, 2021-I2M-1-067), and the Fundamental Research Funds for the Central Universities (3332021091).

Author information

Authors and Affiliations

Authors

Contributions

TG and WS contributed equally to this work. ZL and HC conceived the ideas and supervised the research. TG and WS performed the experiments. XL, JC, NZ, ML and JX performed some assistant works. TG, WS, HC and ZL discussed the results and wrote the manuscript. All authors have read and approved the article.

Corresponding authors

Correspondence to Zhihua Liu or Hongyan Chen.

Ethics declarations

Competing interests

The authors declared no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, T., Sun, W., Li, X. et al. TMSB4Y restrains sphingomyelin synthesis via de novo purine synthesis to exert a tumor suppressor function in male esophageal squamous cell carcinoma. Oncogene 43, 3660–3672 (2024). https://doi.org/10.1038/s41388-024-03193-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03193-z

This article is cited by

Search

Quick links