Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PTPRZ1 dephosphorylates and stabilizes RNF26 to reduce the efficacy of TKIs and PD-1 blockade in ccRCC

Abstract

Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma, often exhibits resistance to tyrosine kinase inhibitors (TKIs) when used as monotherapy. However, the integration of PD-1 blockade with TKIs has significantly improved patient survival, making it a leading therapeutic strategy for ccRCC. Despite these advancements, the efficacy of this combined therapy remains suboptimal, necessitating a deeper understanding of the underlying regulatory mechanisms. Through comprehensive analyses, including mass spectrometry, RNA sequencing, lipidomic profiling, immunohistochemical staining, and ex vivo experiments, we explored the interaction between PTPRZ1 and RNF26 and its impact on ccRCC cell behavior. Our results revealed a unique interaction where PTPRZ1 stabilized RNF26 protein expression by dephosphorylating it at the Y432 site. The modulation of RNF26 levels by PTPRZ1 was found to be mediated through the proteasome pathway. Additionally, PTPRZ1, via its interaction with RNF26, activated the TNF/NF-κB signaling pathway, thereby promoting cell proliferation, angiogenesis, and lipid metabolism in ccRCC cells. Importantly, inhibiting PTPRZ1 enhanced the sensitivity of ccRCC to TKIs and PD-1 blockade, an effect that was attenuated when RNF26 was simultaneously knocked down. These findings highlight the critical role of the PTPRZ1-RNF26 axis in ccRCC and suggest that combining PTPRZ1 inhibitors with current TKIs and PD-1 blockade therapies could significantly improve treatment outcomes for ccRCC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PTPRZ1 binds to and stablizes RNF26 in ccRCC.
Fig. 2: PTPRZ1 dephosphorylates RNF26 at Y432 site.
Fig. 3: PTPRZ1 contributes to the activation of the TNF and NF-kappa B signaling pathways in ccRCC cells.
Fig. 4: PTPRZ1 regulates the lipid metabolism of ccRCC cells.
Fig. 5: RNF26 is the key mediator for PTPRZ1 in ccRCC.
Fig. 6: PTPRZ1 decreases the anti-tumor effect of ccRCC to TKIs and PD-1 blockade.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur Urol. 2016;70:93–105.

    Article  PubMed  Google Scholar 

  2. Ljungberg B, Albiges L, Abu-Ghanem Y, Bensalah K, Dabestani S, Fernandez-Pello S, et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur Urol. 2019;75:799–810.

    Article  PubMed  Google Scholar 

  3. Karam JA, Devine CE, Urbauer DL, Lozano M, Maity T, Ahrar K, et al. Phase 2 trial of neoadjuvant axitinib in patients with locally advanced nonmetastatic clear cell renal cell carcinoma. Eur Urol. 2014;66:874–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gossage L, Eisen T. Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nat Rev Clin Oncol. 2010;7:277–88.

    Article  CAS  PubMed  Google Scholar 

  5. Motzer RJ, Porta C, Eto M, Powles T, Grunwald V, Hutson TE, et al. Lenvatinib Plus Pembrolizumab Versus Sunitinib in First-Line Treatment of Advanced Renal Cell Carcinoma: Final Prespecified Overall Survival Analysis of CLEAR, a Phase III Study. J Clin Oncol. 2024;42:1222–8.

    Article  CAS  PubMed  Google Scholar 

  6. Catalano M, De Giorgi U, Bimbatti D, Buti S, Procopio G, Sepe P, et al. Impact of Metastatic Site in Favorable-Risk Renal Cell Carcinoma Receiving Sunitinib or Pazopanib. Clin Genitourin Cancer. 2024;22:514–22.e511.

    Article  PubMed  Google Scholar 

  7. Kase AM, George DJ, Ramalingam S. Clear Cell Renal Cell Carcinoma: From Biology to Treatment. Cancers (Basel). 2023;15:665.

    Article  CAS  PubMed  Google Scholar 

  8. Vano YA, Elaidi R, Bennamoun M, Chevreau C, Borchiellini D, Pannier D, et al. Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): a biomarker-driven, open-label, non-comparative, randomised, phase 2 trial. Lancet Oncol. 2022;23:612–24.

    Article  CAS  PubMed  Google Scholar 

  9. Cremer T, Jongsma MLM, Trulsson F, Vertegaal ACO, Neefjes J, Berlin I. The ER-embedded UBE2J1/RNF26 ubiquitylation complex exerts spatiotemporal control over the endolysosomal pathway. Cell Rep. 2021;34:108659.

    Article  CAS  PubMed  Google Scholar 

  10. Cremer T, Voortman LM, Bos E, Jongsma ML, Ter Haar LR, Akkermans JJ, et al. RNF26 binds perinuclear vimentin filaments to integrate ER and endolysosomal responses to proteotoxic stress. EMBO J. 2023;42:e111252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu X, Zhang Y, Wu Y, Lu T, Yang H, Yang W, et al. RNF26 Promotes Pancreatic Cancer Proliferation by Enhancing RBM38 Degradation. Pancreas. 2022;51:1427–33.

    Article  CAS  PubMed  Google Scholar 

  12. Yi L, Wang H, Li W, Ye K, Xiong W, Yu H, et al. The FOXM1/RNF26/p57 axis regulates the cell cycle to promote the aggressiveness of bladder cancer. Cell Death Dis. 2021;12:944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu W, Wang H, Jian C, Li W, Ye K, Ren J, et al. The RNF26/CBX7 axis modulates the TNF pathway to promote cell proliferation and regulate sensitivity to TKIs in ccRCC. Int J Biol Sci. 2022;18:2132–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He ZC, Liu Q, Yang KD, Chen C, Zhang XN, Wang WY, et al. HOXA5 is amplified in glioblastoma stem cells and promotes tumor progression by transcriptionally activating PTPRZ1. Cancer Lett. 2022;533:215605.

    Article  CAS  PubMed  Google Scholar 

  15. Lorente G, Nelson A, Mueller S, Kuo J, Urfer R, Nikolich K, et al. Functional comparison of long and short splice forms of RPTPbeta: implications for glioblastoma treatment. Neuro Oncol. 2005;7:154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagai K, Fujii M, Kitazume S. Protein Tyrosine Phosphatase Receptor Type Z in Central Nervous System Disease. Int J Mol Sci. 2022;23:4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shang D, Xu X, Wang D, Li Y, Liu Y. Protein tyrosine phosphatase zeta enhances proliferation by increasing beta-catenin nuclear expression in VHL-inactive human renal cell carcinoma cells. World J Urol. 2013;31:1547–54.

    Article  CAS  PubMed  Google Scholar 

  18. Wang V, Davis DA, Haque M, Huang LE, Yarchoan R. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 2005;65:3299–306.

    Article  CAS  PubMed  Google Scholar 

  19. Liu YT, Shang D, Akatsuka S, Ohara H, Dutta KK, Mizushima K, et al. Chronic oxidative stress causes amplification and overexpression of ptprz1 protein tyrosine phosphatase to activate beta-catenin pathway. Am J Pathol. 2007;171:1978–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fenech EJ, Lari F, Charles PD, Fischer R, Laetitia-Thezenas M, Bagola K, et al. Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling. Elife. 2020;9:e57306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep. 2018;19:e46666.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peng Z, Cheng S, Kou Y, Wang Z, Jin R, Hu H, et al. The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunol Res. 2020;8:1251–61.

    Article  PubMed  Google Scholar 

  23. Li Y, Zhang L, Ren P, Yang Y, Li S, Qin X, et al. Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation. Phytomedicine. 2021;93:153812.

    Article  CAS  PubMed  Google Scholar 

  24. Xu P, Sun Z, Wang Y, Miao C. Long-term use of indomethacin leads to poor prognoses through promoting the expression of PD-1 and PD-L2 via TRIF/NF-κB pathway and JAK/STAT3 pathway to inhibit TNF-α and IFN-γ in hepatocellular carcinoma. Exp Cell Res. 2015;337:53–60.

    Article  CAS  PubMed  Google Scholar 

  25. Goldmann T, Otto F, Vollmer E. A receptor-type protein tyrosine phosphatase PTP zeta is expressed in human cutaneous melanomas. Folia Histochem Cytobiol. 2000;38:19–20.

    CAS  PubMed  Google Scholar 

  26. Fu F, Xiao XI, Zhang T, Zou Q, Chen Z, Pei L, et al. Expression of receptor protein tyrosine phosphatase zeta is a risk factor for triple negative breast cancer relapse. Biomed Rep. 2016;4:167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma Y, Ye F, Xie X, Zhou C, Lu W. Significance of PTPRZ1 and CIN85 expression in cervical carcinoma. Arch Gynecol Obstet. 2011;284:699–704.

    Article  CAS  PubMed  Google Scholar 

  28. Sethi G, Kwon Y, Burkhalter RJ, Pathak HB, Madan R, McHugh S, et al. PTN signaling: Components and mechanistic insights in human ovarian cancer. Mol Carcinog. 2015;54:1772–85.

    Article  CAS  PubMed  Google Scholar 

  29. Yamakawa T, Kurosawa N, Kadomatsu K, Matsui T, Itoh K, Maeda N, et al. Levels of expression of pleiotrophin and protein tyrosine phosphatase zeta are decreased in human colorectal cancers. Cancer Lett. 1999;135:91–6.

    Article  CAS  PubMed  Google Scholar 

  30. Laczmanska I, Karpinski P, Bebenek M, Sedziak T, Ramsey D, Szmida E, et al. Protein tyrosine phosphatase receptor-like genes are frequently hypermethylated in sporadic colorectal cancer. J Hum Genet. 2013;58:11–5.

    Article  CAS  PubMed  Google Scholar 

  31. Xia Z, Ouyang D, Li Q, Li M, Zou Q, Li L, et al. The Expression, Functions, Interactions and Prognostic Values of PTPRZ1: A Review and Bioinformatic Analysis. J Cancer. 2019;10:1663–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma L, Shen T, Peng H, Wu J, Wang W, Gao X. Overexpression of PTPRZ1 Regulates p120/beta-Catenin Phosphorylation to Promote Carcinogenesis of Oral Submucous Fibrosis. J Oncol. 2022;2022:2352360.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kastana P, Ntenekou D, Mourkogianni E, Enake MK, Xanthopoulos A, Choleva E, et al. Genetic deletion or tyrosine phosphatase inhibition of PTPRZ1 activates c-Met to up-regulate angiogenesis and lung adenocarcinoma growth. Int J Cancer. 2023;153:1051–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank ProMab Biotechnologies, Inc. (Changsha, China) for their support with western blotting. Our schematic diagrams were created with BioRender.com.

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 82203537 (Wentao Liu)).

Author information

Authors and Affiliations

Authors

Contributions

Yongkang Ma: Methodology; Wei Li: Methodology; Xinlin Liu: Methodology; Weilin Peng: Formal analysis; Bei Qing: Formal analysis; Shangqing Ren: Project administration; Wentao Liu: Methodology, Investigation; Xiaobing Chen: Project administration, Investigation.

Corresponding authors

Correspondence to Shangqing Ren, Wentao Liu or Xiaobing Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted in accordance with the principles of the Declaration of Helsinki principles. It was approved by the Animal Use and Care Committees at the Second Xiangya hospital, Central South University.

Consent to publication

All subjects have written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Li, W., Liu, X. et al. PTPRZ1 dephosphorylates and stabilizes RNF26 to reduce the efficacy of TKIs and PD-1 blockade in ccRCC. Oncogene 43, 3633–3644 (2024). https://doi.org/10.1038/s41388-024-03198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03198-8

Search

Quick links