Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GNAO1 overexpression promotes neural differentiation of glioma stem-like cells and reduces tumorigenicity through TRIM21/CREB/HES1 axis

Abstract

Inducing tumor cell differentiation is a promising strategy for treating malignant cancers, including glioma, yet the critical regulator(s) underlying glioma cell differentiation is poorly understood. Here, we identify G Protein Subunit Alpha O1 (GNAO1) as a critical regulator of neural differentiation of glioma stem-like cells (GSCs). GNAO1 expression was lower in gliomas than in normal neuronal tissues and high expression of GNAO1 correlated with a better prognosis. GNAO1 overexpression markedly promoted neural differentiation of GSCs, leading to decreased cell proliferation and colony formation. Mechanistically, GNAO1 recruited TRIM21 and facilitated TRIM21-mediated ubiquitination. This ubiquitination resulted in the degradation of CREB and further reduced p300-mediated H3K27ac levels of the HES1 promoter. As a result, GNAO1 overexpression downregulated HES1 expression, which reinforced neuronal differentiation. In addition, knockdown of METTL3, a key writer of the N6-methyladenosine (m6A), enhanced GNAO1 mRNA stability. Treatment with GNAO1 adenovirus increased neuronal differentiation of tumor cells and reduced tumor cell proliferation in orthotopic GSC xenografts and temozolomide further enhanced GNAO1 adenovirus effects, resulting in extended animal survival. Our study presents that engineering GNAO1 overexpression-inducing neural differentiation of GSCs is a potential therapy strategy via synergistic inhibition of malignant proliferation and chemotherapy resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GNAO1 is a new prognostic factor of glioma.
Fig. 2: GNAO1 overexpression promotes GSC differentiation.
Fig. 3: GNAO1 overexpression enhances GSC differentiation by downregulating neural progenitor gene HES1.
Fig. 4: GNAO1 overexpression decreases CREB protein expression and thereby reduces p300-mediated H3K27 acetylation and HES1 transcription.
Fig. 5: GNAO1 recruits TRIM21 and mediates CREB ubiquitination and degradation.
Fig. 6: METTL3 regulates GNAO1 mRNA stability.
Fig. 7: GNAO1 adenovirus treatment promotes xenograft glioblastoma cell differentiation.

Similar content being viewed by others

Data availability

RNA-Seq data reported in this study have been deposited with the Gene Expression Omnibus under the accession GEO ID: GSE234341. (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE234341). The data supporting the findings of this study are available within the article and its Supporting Information files or available from the corresponding author upon reasonable request.

References

  1. Hausmann D, Hoffmann DC, Venkataramani V, Jung E, Horschitz S, Tetzlaff SK, et al. Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature. 2023;613:179–86.

    Article  CAS  PubMed  Google Scholar 

  2. Caccese M, Indraccolo S, Zagonel V, Lombardi G. PD-1/PD-L1 immune-checkpoint inhibitors in glioblastoma: A concise review. Crit Rev Oncol Hematol. 2019;135:128–34.

    Article  PubMed  Google Scholar 

  3. Maghrouni A, Givari M, Jalili-Nik M, Mollazadeh H, Bibak B, Sadeghi MM, et al. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions. Int Immunopharmacol. 2021;93:107403.

    Article  CAS  PubMed  Google Scholar 

  4. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen YC, Ma NX, Pei ZF, Wu Z, Do-Monte FH, Keefe S, et al. A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through In Vivo Astrocyte-to-Neuron Conversion. Mol Ther. 2020;28:217–34.

    Article  CAS  PubMed  Google Scholar 

  6. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell. 2014;14:188–202.

    Article  CAS  PubMed  Google Scholar 

  7. Heinrich C, Bergami M, Gascon S, Lepier A, Vigano F, Dimou L, et al. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep. 2014;3:1000–14.

    Article  CAS  Google Scholar 

  8. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340:626–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Pei Z, Hossain A, Bai Y, Chen G. Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion. Cancer Biol Med. 2021;18:860–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu J, Fang S, Deng S, Li H, Lin X, Huang Y, et al. Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat Biomed Eng. 2022;7:253–69.

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura K, Kodera H, Akita T, Shiina M, Kato M, Hoshino H, et al. De Novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet. 2013;93:496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Larasati YA, Savitsky M, Koval A, Solis GP, Valnohova J, Katanaev VL. Restoration of the GTPase activity and cellular interactions of Galpha(o) mutants by Zn(2+) in GNAO1 encephalopathy models. Sci Adv. 2022;8:eabn9350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strittmatter SM, Valenzuela D, Kennedy TE, Neer EJ, Fishman MC. G0 is a major growth cone protein subject to regulation by GAP-43. Nature. 1990;344:836–41.

    Article  CAS  PubMed  Google Scholar 

  14. Akamine S, Okuzono S, Yamamoto H, Setoyama D, Sagata N, Ohgidani M, et al. GNAO1 organizes the cytoskeletal remodeling and firing of developing neurons. Faseb j. 2020;34:16601–21.

    Article  CAS  PubMed  Google Scholar 

  15. Ghil SH, Kim BJ, Lee YD, Suh-Kim H. Neurite outgrowth induced by cyclic AMP can be modulated by the alpha subunit of Go. J Neurochem. 2000;74:151–8.

    Article  CAS  PubMed  Google Scholar 

  16. Saitsu H, Fukai R, Ben-Zeev B, Sakai Y, Mimaki M, Okamoto N, et al. Phenotypic spectrum of GNAO1 variants: epileptic encephalopathy to involuntary movements with severe developmental delay. Eur J Hum Genet. 2016;24:129–34.

    Article  CAS  PubMed  Google Scholar 

  17. Danti FR, Galosi S, Romani M, Montomoli M, Carss KJ, Raymond FL, et al. GNAO1 encephalopathy: Broadening the phenotype and evaluating treatment and outcome. Neurol Genet. 2017;3:e143.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schorling DC, Dietel T, Evers C, Hinderhofer K, Korinthenberg R, Ezzo D, et al. Expanding Phenotype of De Novo Mutations in GNAO1: Four New Cases and Review of Literature. Neuropediatrics. 2017;48:371–7.

    Article  CAS  PubMed  Google Scholar 

  19. Gerald B, Ramsey K, Belnap N, Szelinger S, Siniard AL, Balak C, et al. Neonatal epileptic encephalopathy caused by de novo GNAO1 mutation misdiagnosed as atypical Rett syndrome: Cautions in interpretation of genomic test results. Semin Pediatr Neurol. 2018;26:28–32.

    Article  PubMed  Google Scholar 

  20. Du M, Feng J, Tao Y, Pan Q, Chen F. GNAO1 as a Novel Predictive Biomarker for Late Relapse in Hepatocellular Carcinoma. J Health Eng. 2021;2021:7631815.

    Article  Google Scholar 

  21. Song L, Yu B, Yang Y, Liang J, Zhang Y, Ding L, et al. Identification of functional cooperative mutations of GNAO1 in human acute lymphoblastic leukemia. Blood. 2021;137:1181–91.

    Article  CAS  PubMed  Google Scholar 

  22. Takenaka K, Kanaho Y, Hara A, Zhang W, Ando T, Sakai N, et al. A guanine nucleotide-binding protein in human astrocytoma. Neurol Res. 1990;12:223–5.

    Article  CAS  PubMed  Google Scholar 

  23. Zupancic K, Blejec A, Herman A, Veber M, Verbovsek U, Korsic M, et al. Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach. Radio Oncol. 2014;48:257–66.

    Article  Google Scholar 

  24. Wang H, Zhao P, Zhang Y, Chen Z, Bao H, Qian W, et al. NeuroD4 converts glioblastoma cells into neuron-like cells through the SLC7A11-GSH-GPX4 antioxidant axis. Cell Death Discov. 2023;9:297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang K, Pan S, Zhao P, Liu L, Chen Z, Bao H, et al. PTBP1 knockdown promotes neural differentiation of glioblastoma cells through UNC5B receptor. Theranostics. 2022;12:3847–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development. 2004;131:5539–50.

    Article  CAS  PubMed  Google Scholar 

  27. Ochi S, Imaizumi Y, Shimojo H, Miyachi H, Kageyama R. Oscillatory expression of Hes1 regulates cell proliferation and neuronal differentiation in the embryonic brain. Development. 2020;147:dev182204.

    Article  CAS  PubMed  Google Scholar 

  28. Liu XF, Tang CX, Zhang L, Tong SY, Wang Y, Abdulrahman AA, et al. Down-Regulated CUEDC2 Increases GDNF Expression by Stabilizing CREB Through Reducing Its Ubiquitination in Glioma. Neurochem Res. 2020;45:2915–25.

    Article  CAS  PubMed  Google Scholar 

  29. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993;365:855–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wada K, Kamitani T. Autoantigen Ro52 is an E3 ubiquitin ligase. Biochem Bioph Res Co. 2006;339:415–21.

    Article  CAS  Google Scholar 

  31. Zhang Z, Bao M, Lu N, Weng L, Yuan B, Liu YJ. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat Immunol. 2013;14:172–8.

    Article  CAS  PubMed  Google Scholar 

  32. Park JS, Burckhardt CJ, Lazcano R, Solis LM, Isogai T, Li L, et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature. 2020;578:621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Q, Sheng Z, Cheng C, Zheng H, Lanuti M, Liu R, et al. Anesthetic Propofol Promotes Tumor Metastasis in Lungs via GABA(A) R-Dependent TRIM21 Modulation of Src Expression. Adv Sci. 2021;8:e2102079.

    Article  Google Scholar 

  34. Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q, et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun. 2017;8:949.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang HT, Zeng Q, Wu B, Lu J, Tong KL, Lin J, et al. TRIM21-regulated Annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy. Cell Death Dis. 2021;12:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Towner RA, Zalles M, Saunders D, Smith N. Novel approaches to combat chemoresistance against glioblastomas. Cancer Drug Resist. 2020;3:686–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guichet PO, Bieche I, Teigell M, Serguera C, Rothhut B, Rigau V, et al. Cell death and neuronal differentiation of glioblastoma stem-like cells induced by neurogenic transcription factors. Glia. 2013;61:225–39.

    Article  PubMed  Google Scholar 

  38. Jiang M, Bajpayee NS. Molecular mechanisms of go signaling. Neurosignals. 2009;17:23–41.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li JY, Zhao Y, Gong S, Wang MM, Liu X, He QM, et al. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun. 2023;14:865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu J, Zhang C, Xu D, Zhang T, Chang CY, Wang J. et al. The ubiquitin ligase TRIM21 regulates mutant p53 accumulation and gain of function in cancer. J Clin Investig. 2023;133:e164354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (32371004, 82072896 to HF, 32271007 to YL, 82103657 to BS, 82173356 to RY); Program of Shanghai Academic/Technology Research Leader (21XD1403100) to HF; Shanghai Natural Science Foundation (23ZR1441000 to YL).

Author information

Authors and Affiliations

Authors

Contributions

HF, YL and HH designed and supervised the project. BS, GW, GC and YZ performed experiments. BS and HF interpreted and/or reviewed the data and wrote the manuscript. GW, GC, YZ and RY edited the manuscript. All authors contributed to the article and approved the final manuscript.

Corresponding authors

Correspondence to Ru Yang, He Hua, Yanxin Li or Haizhong Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors give consent for the publication of the manuscript.

Ethics approval and consent to participate

All clinical brain tissue specimens were collected at Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine in accordance with a protocol approved by Shanghai Jiao Tong University Institutional Clinical Care and Use Committee of Renji Hospital (Shanghai, China). The investigators obtained informed written consent from the patients. These specimens were examined and diagnosed by pathologists at Ren Ji Hospital. All animal experiments were conducted under the Institutional Animal Care and Use Committee (IACUC)-approved protocols at Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine following NIH and institutional guidelines. The approval number was RJ2022-0828.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Wang, G., Chen, G. et al. GNAO1 overexpression promotes neural differentiation of glioma stem-like cells and reduces tumorigenicity through TRIM21/CREB/HES1 axis. Oncogene 44, 450–461 (2025). https://doi.org/10.1038/s41388-024-03234-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03234-7

This article is cited by

Search

Quick links