Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The protection of UCK2 protein stability by GART maintains pyrimidine salvage synthesis for HCC growth under glucose limitation

Abstract

Overexpression of uridine-cytidine kinase 2 (UCK2), a key enzyme in the pyrimidine salvage pathway, is implicated in human cancer development, while its regulation under nutrient stress remains to be investigated. Here, we show that under glucose limitation, AMPK phosphorylates glycinamide ribonucleotide formyltransferase (GART) at Ser440, and this modification facilitates its interaction with UCK2. Through its binding to UCK2, GART generates tetrahydrofolate (THF) and thus inhibits the activity of integrin-linked kinase associated phosphatase (ILKAP) for removing AKT1-mediated UCK2-Ser254 phosphorylation under glucose limitation, in which dephosphorylation of UCK2-Ser254 tends to cause Trim21-mediated UCK2 polyubiquitination and degradation. In this way, both UCK2 binding ability and THF producing catalytic activity of GART protect protein stability of UCK2 and pyrimidine salvage synthesis, and sustain tumor cell growth under glucose limitation. In addition, UCK2-Ser254 phosphorylation level displays a positive relationship with GART-Ser440 phosphorylation level and its enhancement is correlated with poor prognosis of human hepatocellular carcinoma (HCC) patients. These findings reveal a non-canonical role of GART in regulating pyrimidine salvage synthesis under nutrient stress, and raise the potential for alternative treatments in targeting pyrimidine salvage-dependent tumor growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GART sustains pyrimidine salvage synthesis under glucose limitation.
Fig. 2: GART maintains UCK2 protein stability under glucose limitation.
Fig. 3: GART positively regulates AKT1-mediated UCK2 phosphorylation and UCK2 protein stability.
Fig. 4: AMPK phosphorylates GART and promotes GART-UCK2 interaction.
Fig. 5: The interaction of GART with UCK2 is required for maintaining UCK2 protein stability.
Fig. 6: The enzymatic activity of GART inhibits ILKAP phosphatase activity against UCK2 phosphorylation.
Fig. 7: The positive regulation of UCK2 by GART-Ser440 phosphorylation facilitates liver cancer development.

Similar content being viewed by others

Data availability

Supplemental Figures and Table are available in the Supplemental Figures and Table file. The mass spectrometry proteomics data can be accessed at the iProX site.

References

  1. Hotamisligil GS, Davis RJ. Cell signaling and stress responses. Cold Spring Harb Perspect Biol. 2016;8:a006072.

  2. Li X, Egervari G, Wang Y, Berger SL, Lu Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol. 2018;19:563–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  4. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657–69.

    Article  PubMed Central  Google Scholar 

  5. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16:635–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21:669–80.

    Article  CAS  PubMed  Google Scholar 

  7. O’Malley J, Kumar R, Inigo J, Yadava N, Chandra D. Mitochondrial stress response and cancer. Trends Cancer. 2020;6:688–701.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.

    Article  CAS  PubMed  Google Scholar 

  9. Jones ME. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem. 1980;49:253–79.

    Article  CAS  PubMed  Google Scholar 

  10. Traut TW. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem. 1994;140:1–22.

    Article  CAS  PubMed  Google Scholar 

  11. Weber G. Ordered biochemical program of gene expression in cancer cells. Biochemistry (Mosc). 2001;66:1164–73.

    Article  CAS  PubMed  Google Scholar 

  12. Unger MM, Wahl J, Ushmorov A, Buechele B, Simmet T, Debatin KM, et al. Enriching suicide gene bearing tumor cells for an increased bystander effect. Cancer Gene Ther. 2007;14:30–38.

    Article  CAS  PubMed  Google Scholar 

  13. Fairbanks LD, Bofill M, Ruckemann K, Simmonds HA. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J Biol Chem. 1995;270:29682–9.

    Article  CAS  PubMed  Google Scholar 

  14. Okesli-Armlovich A, Gupta A, Jimenez M, Auld D, Liu Q, Bassik MC, et al. Discovery of small molecule inhibitors of human uridine-cytidine kinase 2 by high-throughput screening. Bioorg Med Chem Lett. 2019;29:2559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10:671–84.

    Article  Google Scholar 

  16. Spratlin J, Sangha R, Glubrecht D, Dabbagh L, Young JD, Dumontet C, et al. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res. 2004;10:6956–61.

    Article  CAS  PubMed  Google Scholar 

  17. Gaidano V, Houshmand M, Vitale N, Carra G, Morotti A, Tenace V, et al. The Synergism between DHODH Inhibitors and Dipyridamole Leads to Metabolic Lethality in Acute Myeloid Leukemia. Cancers (Basel). 2021;13:1003.

  18. Peters GJ, Kraal I, Pinedo HM. In vitro and in vivo studies on the combination of Brequinar sodium (DUP-785; NSC 368390) with 5-fluorouracil; effects of uridine. Br J Cancer. 1992;65:229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cysyk RL, Malinowski N, Marquez V, Zaharevitz D, August EM, Moyer JD. Cyclopentenyl uracil: an effective inhibitor of uridine salvage in vivo. Biochem Pharmacol. 1995;49:203–7.

    Article  CAS  PubMed  Google Scholar 

  20. Lane AN, Fan TW. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015;43:2466–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Rompay AR, Norda A, Linden K, Johansson M, Karlsson A. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. Mol Pharmacol. 2001;59:1181–6.

    Article  PubMed  Google Scholar 

  22. Zhou Q, Jiang H, Zhang J, Yu W, Zhou Z, Huang P, et al. Uridine-cytidine kinase 2 promotes metastasis of hepatocellular carcinoma cells via the Stat3 pathway. Cancer Manag Res. 2018;10:6339–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cai J, Sun X, Guo H, Qu X, Huang H, Yu C, et al. Non-metabolic role of UCK2 links EGFR-AKT pathway activation to metastasis enhancement in hepatocellular carcinoma. Oncogenesis. 2020;9:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cong X, Lu C, Huang X, Yang D, Cui X, Cai J, et al. Increased expression of glycinamide ribonucleotide transformylase is associated with a poor prognosis in hepatocellular carcinoma, and it promotes liver cancer cell proliferation. Hum Pathol. 2014;45:1370–8.

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Ding Z, Liu Y, Zhang J, Liu F, Wang X, et al. Glycinamide ribonucleotide formyl transferase is frequently overexpressed in glioma and critically regulates the proliferation of glioma cells. Pathol Res Pract. 2014;210:256–63.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang JM, Jiang C, Ye W, Luo R, Chen HF. Allosteric pathways in tetrahydrofolate sensing riboswitch with dynamics correlation network. Mol Biosyst. 2016;13:156–64.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Loong JH, Wong TL, Tong M, Sharma R, Zhou L, Ng KY, et al. Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma. J Clin Invest. 2021;131:e143377.

  28. Huang Y, Li SR, Gao YJ, Zhu YH, Zhang XF. Novel gene signatures promote epithelial-mesenchymal transition (EMT) in glucose deprivation-Based microenvironment to predict recurrence-free survival in hepatocellular carcinoma. J Oncol. 2023;2023. 6114976.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiang J, Chen C, Liu R, Gou D, Chang L, Deng H, et al. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Invest. 2021;131:e144703.

  30. Nwosu ZC, Ward MH, Sajjakulnukit P, Poudel P, Ragulan C, Kasperek S, et al. Uridine-derived ribose fuels glucose-restricted pancreatic cancer. Nature. 2023;618:151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leung-Hagesteijn C, Mahendra A, Naruszewicz I, Hannigan GE. Modulation of integrin signal transduction by ILKAP, a protein phosphatase 2C associating with the integrin-linked kinase, ILK1. EMBO J. 2001;20:2160–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Manieri W, Moore ME, Soellner MB, Tsang P, Caperelli CA. Human glycinamide ribonucleotide transformylase: active site mutants as mechanistic probes. Biochemistry. 2007;46:156–63.

    Article  CAS  PubMed  Google Scholar 

  33. Knox AJ, Graham C, Bleskan J, Brodsky G, Patterson D. Mutations in the Chinese hamster ovary cell GART gene of de novo purine synthesis. Gene. 2009;429:23–30.

    Article  CAS  PubMed  Google Scholar 

  34. Qian X, Li X, Tan L, Lee JH, Xia Y, Cai Q, et al. Conversion of PRPS Hexamer to Monomer by AMPK-Mediated Phosphorylation Inhibits Nucleotide Synthesis in Response to Energy Stress. Cancer Discov. 2018;8:94–107.

    Article  CAS  PubMed  Google Scholar 

  35. Welin M, Grossmann JG, Flodin S, Nyman T, Stenmark P, Tresaugues L, et al. Structural studies of tri-functional human GART. Nucleic Acids Res. 2010;38:7308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Field MS, Kamynina E, Chon J, Stover PJ. Nuclear folate metabolism. Annu Rev Nutr. 2018;38:219–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Noguchi H, Prem veer Reddy G, Pardee AB. Rapid incorporation of label from ribonucleoside disphosphates into DNA by a cell-free high molecular weight fraction from animal cell nuclei. Cell. 1983;32:443–51.

    Article  CAS  PubMed  Google Scholar 

  38. Prem veer Reddy G, Pardee AB. Multienzyme complex for metabolic channeling in mammalian DNA replication. Proc Natl Acad Sci USA. 1980;77:3312–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Butler P, Pascheto I, Lizzi M, St-Onge R, Lanner C, Guo B, et al. RNA disruption is a widespread phenomenon associated with stress-induced cell death in tumour cells. Sci Rep. 2023;13:1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen L, Ducker GS, Lu W, Teng X, Rabinowitz JD. An LC-MS chemical derivatization method for the measurement of five different one-carbon states of cellular tetrahydrofolate. Anal Bioanal Chem. 2017;409:5955–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao Q, Zheng K, Ma C, Li J, Zhuo L, Huang W, et al. PTPS facilitates compartmentalized LTBP1 S-nitrosylation and promotes tumor Growth under hypoxia. Mol Cell. 2020;77:95–107 e105.

    Article  CAS  PubMed  Google Scholar 

  42. Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, et al. iProX: an integrated proteome resource. Nucleic Acids Res. 2019;47:D1211–D1217.

    Article  PubMed  Google Scholar 

  43. Chen T, Ma J, Liu Y, Chen Z, Xiao N, Lu Y, et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 2022;50:D1522–D1527.

    Article  CAS  PubMed  Google Scholar 

  44. Wang T, Yu Q, Li J, Hu B, Zhao Q, Ma C, et al. O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency. Nat Cell Biol. 2017;19:833–43.

    Article  PubMed  Google Scholar 

  45. Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ, et al. EGFR-Phosphorylated Platelet Isoform of Phosphofructokinase 1 Promotes PI3K Activation. Mol Cell. 2018;70:197–210 e197.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jakkula P, Qureshi R, Iqbal A, Sagurthi SR, Qureshi IA. Leishmania donovani PP2C: Kinetics, structural attributes and in vitro immune response. Mol Biochem Parasitol. 2018;223:37–49.

    Article  CAS  PubMed  Google Scholar 

  47. Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science. 2013;339:1323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff members of the Large-scale Protein Preparation System at the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, China for providing technical support and assistance in data collection and analysis.

Funding

This work was supported by National Key R&D Program of China (2023YFA1802004 to Y. Jiang), National Nature Science Foundation of China (82273230 to Q. Zhao; 81972586 to Y. Jiang).

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived by Q. Zhao, Y. Jiang and Q. Xia; Q. Zhao and Y. Jiang designed the study; Q. Zhao, N. Sha, B. Zhou, G. Hou, Z. Xi, W. Wang, M. Yan, J. He, Y. Zhou performed experiments; Q. Zhao and Y. Jiang wrote the paper with comments from all authors.

Corresponding authors

Correspondence to Qiang Xia, Yuhui Jiang or Qin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The authors confirm that all methods were performed in accordance with the relevant guidelines and regulations. This study was reviewed and approved by Shanghai Jiaotong University School of Medicine, Renji Hospital Ethics Committee (KY2024-152-B) with written informed consents from all the patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, N., Zhou, B., Hou, G. et al. The protection of UCK2 protein stability by GART maintains pyrimidine salvage synthesis for HCC growth under glucose limitation. Oncogene 44, 1078–1092 (2025). https://doi.org/10.1038/s41388-025-03274-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03274-7

This article is cited by

Search

Quick links