Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LRRK2 reduces the sensitivity to TKI and PD-1 blockade in ccRCC via activating LPCAT1

Abstract

Tyrosine kinase inhibitor (TKI) and immune checkpoint inhibitor (ICI) combination therapy is emerging as a major therapeutic strategy for advanced clear cell renal cell carcinoma (ccRCC). To define the druggable targets for improvement of TKI and ICI combination therapy in ccRCC, we analyzed a commercial protein kinase inhibitor dataset and a public ccRCC dataset and identified LRRK2 as a potential candidate that can be targeted by a small molecule inhibitor. We demonstrated that LRRK2 was transcriptionally upregulated by HIF2A and enabled to drive proliferation of ccRCC cells in a manner independent of its kinase activity. LRRK2 inhibits the RBX1-mediated degradation of lipid metabolism modulator LPCAT1 to reducing the sensitivity to TKI and PD-1 blockade in ccRCC. Specifically, LRRK2/LPCAT1 upregulated IL-1β expression levels through AKT and also increased IL-1β shearing by activating inflammasome. To target the kinase-independent activity of LRRK2, we developed an LR-protac and showed that LR-protac decreased LRRK2 protein level and enhanced the antitumor effect of PD-1 blockade and TKI in ccRCC. These data indicate that LRRK2 is a viable target for improvement of the efficacy of PD-1 blockade and TKI in ccRCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LRRK2 is transcriptionally upregulated by HIF2A and enhances ccRCC proliferation in a kinase-independent manner.
Fig. 2: LRRK2 disrupts lipid metabolism in ccRCC.
Fig. 3: LRRK2 promotes the proliferation of ccRCC cells by activating lipid metabolism associated with the LPCAT1-AKT signaling pathway.
Fig. 4: LRRK2 protects LPCAT1 from degradation mediated by RBX1 in ccRCC.
Fig. 5: LRRK2 upregulates the IL-1β though LPCAT1 in ccRCC cells.
Fig. 6: LRRK2 decreases the sensitivity of ccRCC to ICIs and TKIs.
Fig. 7: LR-protac degrades LRRK2 to increase the sensitivity of ccRCC to PD-1 blockade and TKIs.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request. The data generated in this study are publicly available in Gene Expression Omnibus (GEO) at GSE264320.

References

  1. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur Urol. 2016;70:93–105.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  4. Tran J, Ornstein MC. Clinical Review on the Management of Metastatic Renal Cell Carcinoma. JCO Oncol Pract. 2022;18:187–96.

    Article  PubMed  Google Scholar 

  5. Ljungberg B, Albiges L, Abu-Ghanem Y, Bensalah K, Dabestani S, Fernandez-Pello S, et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur Urol. 2019;75:799–810.

    Article  PubMed  Google Scholar 

  6. Shenoy N, Pagliaro L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann Oncol. 2016;27:1685–95.

    Article  CAS  PubMed  Google Scholar 

  7. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, et al. Overall Survival and Updated Results for Sunitinib Compared With Interferon Alfa in Patients With Metastatic Renal Cell Carcinoma. J Clin Oncol. 2023;41:1965–71.

    Article  CAS  PubMed  Google Scholar 

  8. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378:1931–9.

    Article  CAS  PubMed  Google Scholar 

  9. Motzer RJ, Hutson TE, Ren M, Dutcus C, Larkin J. Independent assessment of lenvatinib plus everolimus in patients with metastatic renal cell carcinoma. Lancet Oncol. 2016;17:e4–5.

    Article  PubMed  Google Scholar 

  10. Teisseire M, Giuliano S, Pages G. Combination of Anti-Angiogenics and Immunotherapies in Renal Cell Carcinoma Show Their Limits: Targeting Fibrosis to Break through the Glass Ceiling? Biomedicines. 2024;12:385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu XD, Hoang A, Zhou L, Kalra S, Yetil A, Sun M, et al. Resistance to Antiangiogenic Therapy Is Associated with an Immunosuppressive Tumor Microenvironment in Metastatic Renal Cell Carcinoma. Cancer Immunol Res. 2015;3:1017–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019;380:1116–27.

    Article  CAS  PubMed  Google Scholar 

  13. Cella D, Motzer RJ, Suarez C, Blum SI, Ejzykowicz F, Hamilton M, et al. Patient-reported outcomes with first-line nivolumab plus cabozantinib versus sunitinib in patients with advanced renal cell carcinoma treated in CheckMate 9ER: an open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23:292–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Motzer R, Alekseev B, Rha SY, Porta C, Eto M, Powles T, et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N Engl J Med. 2021;384:1289–300.

    Article  CAS  PubMed  Google Scholar 

  15. Vano YA, Elaidi R, Bennamoun M, Chevreau C, Borchiellini D, Pannier D, et al. Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): a biomarker-driven, open-label, non-comparative, randomised, phase 2 trial. Lancet Oncol. 2022;23:612–24.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Peng M, Zhong Y, Xiong W, Zhu L, Jin X. The E3 ligase RBCK1 reduces the sensitivity of ccRCC to sunitinib through the ANKRD35-MITD1-ANXA1 axis. Oncogene. 2023;42:952–66.

    Article  CAS  PubMed  Google Scholar 

  17. Liu W, Wang H, Jian C, Li W, Ye K, Ren J, et al. The RNF26/CBX7 axis modulates the TNF pathway to promote cell proliferation and regulate sensitivity to TKIs in ccRCC. Int J Biol Sci. 2022;18:2132–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu W, Ren D, Xiong W, Jin X, Zhu L. A novel FBW7/NFAT1 axis regulates cancer immunity in sunitinib-resistant renal cancer by inducing PD-L1 expression. J Exp Clin Cancer Res. 2022;41:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu W, Yan B, Yu H, Ren J, Peng M, Zhu L, et al. OTUD1 stabilizes PTEN to inhibit the PI3K/AKT and TNF-alpha/NF-kappaB signaling pathways and sensitize ccRCC to TKIs. Int J Biol Sci. 2022;18:1401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiong W, Zhang B, Yu H, Zhu L, Yi L, Jin X. RRM2 Regulates Sensitivity to Sunitinib and PD-1 Blockade in Renal Cancer by Stabilizing ANXA1 and Activating the AKT Pathway. Adv Sci (Weinh). 2021;8:e2100881.

    Article  PubMed  Google Scholar 

  21. Chiang IC, Chen SY, Hsu YH, Shahidi F, Yen GC. Pterostilbene and 6-shogaol exhibit inhibitory effects on sunitinib resistance and motility by suppressing the RLIP76-initiated Ras/ERK and Akt/mTOR pathways in renal cancer cells. Eur J Pharmacol. 2024;967:176393.

    Article  CAS  PubMed  Google Scholar 

  22. Zerdes I, Matikas A, Bergh J, Rassidakis GZ, Foukakis T. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene. 2018;37:4639–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang H, Wang H, Chen J, Liu P, Xiao X. Overexpressed FAM111B degrades GSDMA to promote esophageal cancer tumorigenesis and cisplatin resistance. Cell Oncol (Dordr). 2024;47:343–59.

    Article  CAS  PubMed  Google Scholar 

  24. Miikkulainen P, Hogel H, Seyednasrollah F, Rantanen K, Elo LL, Jaakkola PM. Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) maintains high HIF2A mRNA levels in clear cell renal cell carcinoma. J Biol Chem. 2019;294:3760–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mathew LK, Lee SS, Skuli N, Rao S, Keith B, Nathanson KL, et al. Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2alpha activity. Cancer Discov. 2014;4:53–60.

    Article  CAS  PubMed  Google Scholar 

  26. Hoefflin R, Harlander S, Schafer S, Metzger P, Kuo F, Schonenberger D, et al. HIF-1alpha and HIF-2alpha differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat Commun. 2020;11:4111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Ho PW, Leung CT, Pang SY, Chang EES, Choi ZY, et al. Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2(R1441G) mice. Autophagy. 2021;17:3196–220.

    Article  CAS  PubMed  Google Scholar 

  28. Qu YY, Zhao R, Zhang HL, Zhou Q, Xu FJ, Zhang X, et al. Inactivation of the AMPK-GATA3-ECHS1 Pathway Induces Fatty Acid Synthesis That Promotes Clear Cell Renal Cell Carcinoma Growth. Cancer Res. 2020;80:319–33.

    Article  CAS  PubMed  Google Scholar 

  29. Tao M, Luo J, Gu T, Yu X, Song Z, Jun Y, et al. LPCAT1 reprogramming cholesterol metabolism promotes the progression of esophageal squamous cell carcinoma. Cell Death Dis. 2021;12:845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Du Y, Wang Q, Zhang X, Wang X, Qin C, Sheng Z, et al. Lysophosphatidylcholine acyltransferase 1 upregulation and concomitant phospholipid alterations in clear cell renal cell carcinoma. J Exp Clin Cancer Res. 2017;36:66.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ding J, Ding X, Leng Z. LPCAT1 promotes gefitinib resistance via upregulation of the EGFR/PI3K/AKT signaling pathway in lung adenocarcinoma. J Cancer. 2022;13:1837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Huang Y, Wang Y, Zhang W, Wang N, Bai R, et al. LPCAT1 promotes melanoma cell proliferation via Akt signaling. Oncol Rep. 2024;51:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei C, Dong X, Lu H, Tong F, Chen L, Zhang R, et al. LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway. J Exp Clin Cancer Res. 2019;38:95.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dell’Atti L, Bianchi N, Aguiari G. New Therapeutic Interventions for Kidney Carcinoma: Looking to the Future. Cancers (Basel). 2022;14:3616.

    Article  PubMed  Google Scholar 

  35. Prevete N, Liotti F, Amoresano A, Pucci P, de Paulis A, Melillo RM. New perspectives in cancer: Modulation of lipid metabolism and inflammation resolution. Pharmacol Res. 2018;128:80–7.

    Article  PubMed  Google Scholar 

  36. Lai Y, Tang F, Huang Y, He C, Chen C, Zhao J, et al. The tumour microenvironment and metabolism in renal cell carcinoma targeted or immune therapy. J Cell Physiol. 2021;236:1616–27.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao X, Lian X, Xie J, Liu G. Accumulated cholesterol protects tumours from elevated lipid peroxidation in the microenvironment. Redox Biol. 2023;62:102678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aggen DH, Ager CR, Obradovic AZ, Chowdhury N, Ghasemzadeh A, Mao W, et al. Blocking IL1 Beta Promotes Tumor Regression and Remodeling of the Myeloid Compartment in a Renal Cell Carcinoma Model: Multidimensional Analyses. Clin Cancer Res. 2021;27:608–21.

    Article  CAS  PubMed  Google Scholar 

  39. Huang Y, Wang Y, Zhen Y, Liu W, Wang Y, Wang R, et al. LPCAT1 Facilitates Keratinocyte Hyperproliferation and Skin Inflammation in Psoriasis by Regulating GLUT3. J Invest Dermatol. 2024;144:1479–49.e14.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1beta and TNF-alpha in intervertebral disc degeneration. Biomed Pharmacother. 2020;131:110660.

    Article  CAS  PubMed  Google Scholar 

  41. Yuan B, Clowers MJ, Velasco WV, Peng S, Peng Q, Shi Y, et al. Targeting IL-1beta as an immunopreventive and therapeutic modality for K-ras-mutant lung cancer. JCI Insight. 2022;7:e157788.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tian T, Lofftus S, Pan Y, Stingley CA, King SL, Zhao J, et al. IL1alpha Antagonizes IL1beta and Promotes Adaptive Immune Rejection of Malignant Tumors. Cancer Immunol Res. 2020;8:660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yap TA, Yan L, Patnaik A, Fearen I, Olmos D, Papadopoulos K, et al. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol. 2011;29:4688–95.

    Article  CAS  PubMed  Google Scholar 

  44. Ling YJ, Ding TY, Dong FL, Gao YJ, Jiang BC. Intravenous Administration of Triptonide Attenuates CFA-Induced Pain Hypersensitivity by Inhibiting DRG AKT Signaling Pathway in Mice. J Pain Res. 2020;13:3195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Gao JZ, Sakaguchi T, Maretzky T, Gurung P, Narayanan NS, et al. LRRK2 G2019S Promotes Colon Cancer Potentially via LRRK2-GSDMD Axis-Mediated Gut Inflammation. Cells. 2024;13:565.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Soupene E, Fyrst H, Kuypers FA. Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes. Proc Natl Acad Sci USA. 2008;105:88–93.

    Article  CAS  PubMed  Google Scholar 

  48. Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem. 2011;286:21330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han YH, Liu XD, Jin MH, Sun HN, Kwon T. Role of NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflamm Res. 2023;72:1839–59.

    Article  CAS  PubMed  Google Scholar 

  50. Sun Y, Zhu L, Liu P, Zhang H, Guo F, Jin X. ZDHHC2-Mediated AGK Palmitoylation Activates AKT-mTOR Signaling to Reduce Sunitinib Sensitivity in Renal Cell Carcinoma. Cancer Res. 2023;83:2034–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rutherford KA, McManus KJ. PROTACs: Current and Future Potential as a Precision Medicine Strategy to Combat Cancer. Mol Cancer Ther. 2024;23:454–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choueiri TK, Eto M, Motzer R, De Giorgi U, Buchler T, Basappa NS, et al. Lenvatinib plus pembrolizumab versus sunitinib as first-line treatment of patients with advanced renal cell carcinoma (CLEAR): extended follow-up from the phase 3, randomised, open-label study. Lancet Oncol. 2023;24:228–38.

    Article  CAS  PubMed  Google Scholar 

  53. Kitajima S, Tani T, Springer BF, Campisi M, Osaki T, Haratani K, et al. MPS1 inhibition primes immunogenicity of KRAS-LKB1 mutant lung cancer. Cancer Cell. 2022;40:1128–44 e1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang M, Zhu L, Yang X, Li J, Liu Y, Tang Y. Targeting immune cell types of tumor microenvironment to overcome resistance to PD-1/PD-L1 blockade in lung cancer. Front Pharmacol. 2023;14:1132158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin H, Shi Y, Lv Y, Yuan S, Ramirez CFA, Lieftink C, et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature. 2021;595:730–4.

    Article  CAS  PubMed  Google Scholar 

  56. Wojewska DN, Kortholt A. LRRK2 Targeting Strategies as Potential Treatment of Parkinson’s Disease. Biomolecules. 2021;11:1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sosero YL, Gan-Or Z. LRRK2 and Parkinson’s disease: from genetics to targeted therapy. Ann Clin Transl Neurol. 2023;10:850–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jennings D, Huntwork-Rodriguez S, Vissers M, Daryani VM, Diaz D, Goo MS, et al. LRRK2 Inhibition by BIIB122 in Healthy Participants and Patients with Parkinson’s Disease. Mov Disord. 2023;38:386–98.

    Article  CAS  PubMed  Google Scholar 

  59. Qiu Y, Liu L, Yang H, Chen H, Deng Q, Xiao D, et al. Integrating Histologic and Genomic Characteristics to Predict Tumor Mutation Burden of Early-Stage Non-Small-Cell Lung Cancer. Front Oncol. 2020;10:608989.

    Article  PubMed  Google Scholar 

  60. Cheung M, Kadariya Y, Sementino E, Hall MJ, Cozzi I, Ascoli V, et al. Novel LRRK2 mutations and other rare, non-BAP1-related candidate tumor predisposition gene variants in high-risk cancer families with mesothelioma and other tumors. Hum Mol Genet. 2021;30:1750–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu YM, Sa Y, Guo Y, Li QF, Zhang N. Identification of WHO II/III Gliomas by 16 Prognostic-related Gene Signatures using Machine Learning Methods. Curr Med Chem. 2022;29:1622–39.

    Article  CAS  PubMed  Google Scholar 

  62. Yang C, Pang J, Xu J, Pan H, Li Y, Zhang H, et al. LRRK2 is a candidate prognostic biomarker for clear cell renal cell carcinoma. Cancer Cell Int. 2021;21:343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park S, Kim KH, Bae YH, Oh YT, Shin H, Kwon HJ, et al. Suppression of Glioblastoma Stem Cell Potency and Tumor Growth via LRRK2 Inhibition. Int J Stem Cells. 2024;17:319–29.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhou L, Luo Y, Liu Y, Zeng Y, Tong J, Li M, et al. Fatty Acid Oxidation Mediated by Malonyl-CoA Decarboxylase Represses Renal Cell Carcinoma Progression. Cancer Res. 2023;83:3920–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yao D, Xia S, Jin C, Zhao W, Lan W, Liu Z, et al. Feedback activation of GATA1/miR-885-5p/PLIN3 pathway decreases sunitinib sensitivity in clear cell renal cell carcinoma. Cell Cycle. 2020;19:2195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang H, Li Z, Huan C, Jiang XC. Macrophage Lysophosphatidylcholine Acyltransferase 3 Deficiency-Mediated Inflammation Is Not Sufficient to Induce Atherosclerosis in a Mouse Model. Front Cardiovasc Med. 2018;5:192.

    Article  CAS  PubMed  Google Scholar 

  67. Wang B, Tontonoz P. Phospholipid Remodeling in Physiology and Disease. Annu Rev Physiol. 2019;81:165–88.

    Article  PubMed  Google Scholar 

  68. Bent R, Moll L, Grabbe S, Bros M. Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci. 2018;19:2155.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Shanghai BioProfile Biotechnology (Shanghai, China) for technical support. We would like to thank ProMab Biotechnologies, Inc. (Changsha, China) for their antibody.

Author information

Authors and Affiliations

Authors

Contributions

Yulong Hong: Methodology; Wei Li: Methodology; Zhuo Xing: Methodology; Minghao Lu: Methodology; Tianyu Tang: Formal analysis; Liang Zhu: Formal analysis; Wei Xiong: Formal analysis; Wentao Liu: Project administration, Investigation; Huan Zhang: Investigation; Shangqing Ren: Project administration, Investigation.

Corresponding authors

Correspondence to Huan Zhang, Wentao Liu or Shangqing Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

We confirm that all methods are performed in accordance with the relevant guidelines and regulations. The study was approved by the Animal Use and Care Committees at the Second Xiangya hospital, Central South University (License No. 20240511). We obtained informed consent from all patients to whom the specimens belonged. We obtained informed consent from all patients for the use of their specimens.

Consent for publication

All subjects have written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Li, W., Xing, Z. et al. LRRK2 reduces the sensitivity to TKI and PD-1 blockade in ccRCC via activating LPCAT1. Oncogene 44, 1761–1776 (2025). https://doi.org/10.1038/s41388-025-03289-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03289-0

This article is cited by

Search

Quick links