Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FDX1 promotes elesclomol-induced PANoptosis in diffuse large B-cell lymphoma via activating IRF3/IFN-β signaling

Abstract

Diffuse large B-cell lymphoma (DLBCL) remains a major clinical challenge and requires the development of new therapeutic approaches. The identification of cuproptosis, a newly defined form of copper-induced cell death, has provided innovative insights for cancer therapy. Here, we report that loss of the mitochondrial matrix reductase FDX1 in DLBCL cells impairs the antitumor effect of elesclomol (ES), which performs its function by transporting excess copper into cells. Overexpressing (OE) FDX1 significantly sensitized DLBCL cells to ES-induced cell death in vitro and enhanced the anticancer activity of ES in vivo. Furthermore, treatment with ES in FDX1-high expression patient-derived xenograft (PDX) showed a significantly greater inhibitory effect than in FDX1-low expression PDX. Mechanistically, FDX1 promotes the induction of IFN-β-dependent PANoptosis by increasing IRF3 phosphorylation in DLBCL cells upon ES treatment. Consistent with this finding, patient cohort analysis revealed that FDX1 expression correlated positively with enhanced IRF3 phosphorylation. Together, our findings are the first to identify the central role of FDX1 in synergizing with ES to activate IFN-β signaling and induce PANoptosis. This study enables us to re-explore the clinical anticancer potential of ES as a novel therapeutic strategy for DLBCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Restoring FDX1 expression significantly promotes ES-induced DLBCL cell death.
Fig. 2: ES induces FDX1-dependent PANoptosis in DLBCL cells.
Fig. 3: FDX1 promotes the activation of IFN-β signaling in DLBCL cells upon ES treatment.
Fig. 4: FDX1 induces IRF3 activation upstream of IFN-β and promotes downstream PANoptosis and ISG induction.
Fig. 5: ES-induced death in FDX1-OE cells is dependent on IFN-β secretion.
Fig. 6: Restoration of FDX1 expression enhances the anticancer activity of ES in a mouse model.
Fig. 7: The protein levels of FDX1 and phosphorylated IRF3 were assessed in a human DLBCL tumor tissue microarray.

Similar content being viewed by others

Data availability

All data generated and/or analyzed during this study are included in this article and its supplemental material file. The RNA-seq datasets are available in the Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo) under accession nos. GSE228261 and GSE228263. Other data supporting the findings of this study are available from the corresponding authors.

References

  1. Sehn LH, Salles G. Diffuse Large B-Cell Lymphoma. N Engl J Med. 2021;384:842–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crombie JL, Armand P. Diffuse Large B-Cell Lymphoma’s New Genomics: The Bridge and the Chasm. J Clin Oncol. 2020;38:3565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nastoupil LJ, Bartlett NL. Navigating the Evolving Treatment Landscape of Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2023;41:903–13.

    Article  CAS  PubMed  Google Scholar 

  4. Reddy NM, Thieblemont C. Maintenance therapy following induction chemoimmunotherapy in patients with diffuse large B-cell lymphoma: current perspective. Ann Oncol. 2017;28:2680–90.

    Article  CAS  PubMed  Google Scholar 

  5. Pasqualucci L, Dalla-Favera R. Genetics of diffuse large B-cell lymphoma. Blood. 2018;131:2307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 2008;4:176–85.

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Sun L, Koya K, Tatsuta N, Xia Z, Korbut T, et al. Syntheses and antitumor activities of N'1,N'3-dialkyl-N'1,N'3-di-(alkylcarbonothioyl) malonohydrazide: the discovery of elesclomol. Bioorg Med Chem Lett. 2013;23:5070–6.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng P, Zhou C, Lu L, Liu B, Ding Y. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 2022;41:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schulz V, Freibert SA, Boss L, Muhlenhoff U, Stehling O, Lill R. Mitochondrial [2Fe-2S] ferredoxins: new functions for old dogs. FEBS Lett. 2023;597:102–21.

  10. Zhong Y, Zeng W, Chen Y, Zhu X. The effect of lipid metabolism on cuproptosis-inducing cancer therapy. Biomed Pharmacother. 2024;172:116247.

    Article  CAS  PubMed  Google Scholar 

  11. Zulkifli M, Spelbring AN, Zhang Y, Soma S, Chen S, Li L, et al. FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery. Proc Natl Acad Sci USA. 2023;120:e2216722120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Molecular cancer therapeutics. 2008;7:2319–27.

    Article  CAS  PubMed  Google Scholar 

  13. Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J, et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic Biol Med. 2012;52:2142–50.

    Article  CAS  PubMed  Google Scholar 

  14. O’Day S, Gonzalez R, Lawson D, Weber R, Hutchins L, Anderson C, et al. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J Clin Oncol. 2009;27:5452–8.

    Article  PubMed  Google Scholar 

  15. Monk BJ, Kauderer JT, Moxley KM, Bonebrake AJ, Dewdney SB, Secord AA, et al. A phase II evaluation of elesclomol sodium and weekly paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer: An NRG oncology/gynecologic oncology group study. Gynecol Oncol. 2018;151:422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berkenblit A, Eder JP Jr, Ryan DP, Seiden MV, Tatsuta N, Sherman ML, et al. Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors. Clin Cancer Res. 2007;13:584–90.

    Article  CAS  PubMed  Google Scholar 

  17. O’Day SJ, Eggermont AM, Chiarion-Sileni V, Kefford R, Grob JJ, Mortier L, et al. Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol. 2013;31:1211–8.

    Article  PubMed  Google Scholar 

  18. Cen D, Brayton D, Shahandeh B, Meyskens FL Jr, Farmer PJ. Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. J Med Chem. 2004;47:6914–20.

    Article  CAS  PubMed  Google Scholar 

  19. Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019;15:681–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, et al. Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J Am Chem Soc. 2011;133:6235–42.

    Article  CAS  PubMed  Google Scholar 

  21. Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol. 2021;15:3527–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 2021;597:415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 2021;37:109858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malireddi RKS, Gurung P, Kesavardhana S, Samir P, Burton A, Mummareddy H, et al. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J Exp Med. 2020;217:jem.20191644.

  25. Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, et al. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci Immunol. 2022;7:eabo6294.

    Article  CAS  PubMed  Google Scholar 

  26. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al. Synergism of TNF-alpha and IFN-gamma Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184:149–68.e17.

    Article  CAS  PubMed  Google Scholar 

  27. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  28. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science. 2006;311:847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39:443–53.

    Article  CAS  PubMed  Google Scholar 

  30. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  31. Trinchieri G. Type I interferon: friend or foe?. J Exp Med. 2010;207:2053–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478:515–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472:481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stark GR, Darnell JE Jr. The JAK-STAT pathway at twenty. Immunity. 2012;36:503–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol. 2016;16:566–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klossowski S, Miao H, Kempinska K, Wu T, Purohit T, Kim E, et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. Journal Clin Investig. 2020;130:981–97.

    Article  CAS  Google Scholar 

  37. Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: ‘Copper That Cancer’. Metallomics. 2015;7:1459–76.

    Article  CAS  PubMed  Google Scholar 

  38. Kaiafa GD, Saouli Z, Diamantidis MD, Kontoninas Z, Voulgaridou V, Raptaki M, et al. Copper levels in patients with hematological malignancies. Eur J Intern Med. 2012;23:738–41.

    Article  CAS  PubMed  Google Scholar 

  39. Cobine PA, Brady DC. Cuproptosis: Cellular and molecular mechanisms underlying copper-induced cell death. Mol Cell. 2022;82:1786–7.

    Article  CAS  PubMed  Google Scholar 

  40. Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 2023;19:1982–1996.

  41. Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell. 2013;154:47–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santaguida S, Amon A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol. 2015;16:473–85.

    Article  CAS  PubMed  Google Scholar 

  43. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  CAS  PubMed  Google Scholar 

  44. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bakhoum SF, Cantley LC. The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment. Cell. 2018;174:1347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553:467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghosh M, Saha S, Bettke J, Nagar R, Parrales A, Iwakuma T, et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell. 2021;39:494–508.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Solmonson A, DeBerardinis RJ. Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem. 2018;293:7522–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jiajia Xu for critical reading of the manuscript and for reagents. This work was supported by the National Natural Science Foundation of China (grant 32200723). This study was also partially supported by the Postdoctoral Starting Fund of the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Shanghai Municipal Health Commission Research Project (20194Y0242).

Author information

Authors and Affiliations

Authors

Contributions

WC, YJ and JZ contributed equally to this work. YJ and QW designed the research and conceived and coordinated the study; QW, WC, YC and DL performed the experiments; YJ, XF, and DL analyzed the data; JZ and YS performed the bioinformatic analyses. QW, YJ, XZ, QZ, and YS wrote the manuscript, which all other authors commented on.

Corresponding authors

Correspondence to Yangbai Sun, Qinyuan Zhu, Xiaoren Zhang or Qi Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All animal experiments were approved by the Institute Research Ethics Committees of Sixth Affiliated Hospital of Guangzhou Medical University (LAEC-2021-011). A tissue microarray (TMA) containing 105 DLBCL samples was constructed by the Tissue Bank of the Fudan University Shanghai Cancer Center (FUSCC). This study was approved by the Medical Ethical Committee of FUSCC (FEC-20170314). Written informed consent was obtained from each patient in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Jiang, Y., Zeng, J. et al. FDX1 promotes elesclomol-induced PANoptosis in diffuse large B-cell lymphoma via activating IRF3/IFN-β signaling. Oncogene 44, 2303–2314 (2025). https://doi.org/10.1038/s41388-025-03366-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03366-4

Search

Quick links