Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A microprotein encoded by LINC00263 promotes breast cancer osteolytic bone metastasis by inducing osteoclastogenesis and inhibiting osteoclast ferroptosis

This article has been updated

Abstract

Currently, there are no effective prevention or therapeutic methods for breast cancer bone metastasis (BC-BM), which leading to severe skeletal complications and increased mortality. Understanding the mechanisms underlying BC-BM could provide potential strategies for its prevention and treatment. In this study, we identified a new microprotein encoded by lncRNA LINC00263, which we named LINC00263-encoded protein (LINC00263-P), was significantly upregulated in bone metastatic breast cancer tissues and correlated with BC-BM. Overexpression of LINC00263 significantly promoted BC-BM, while treatment with the neutralizing anti-LINC00263-P antibody effectively inhibited BC-BM. Mechanically, the LINC00263-P binds to integrin αvβ3 for activating Src/Syk/Vav-3 axis and yes-associated protein 1 (YAP1) pathway, which enhanced osteoclastogenesis and diminishes ferroptosis in osteoclasts, thereby creating an osteolytic bone metastasis niche that fosters BC-BM. Importantly, treatment with angoroside C, an active component from the traditional Chinese medicine Scrophulariae Radix extract, effectively blocked the binding of LINC00263-P to αvβ3, thereby inhibiting abnormal osteoclastogenesis and preventing BC-BM. These findings highlight the crucial role of microprotein LINC00263-P in disrupting bone homeostasis and propose a potential molecular mechanism of BC-BM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LINC00263-P is significantly upregulated in breast cancer with bone metastasis.
Fig. 2: LINC00263-P promote osteolytic bone metastasis in breast cancer.
Fig. 3: LINC00263-P promotes osteoclastogenesis.
Fig. 4: LINC00263-P inhibits osteoclasts ferroptosis.
Fig. 5: LINC00263-P promotes podosome formation and inhibits osteoclasts ferroptosis by interacting with αvβ3.
Fig. 6: LINC00263-P inhibits osteoclasts ferroptosis by activating αvβ3.
Fig. 7: Angoroside C inhibits the interaction between LINC00263-P and integrin αvβ3.
Fig. 8: Angoroside C treatment inhibits osteoclastogenesis and BC-BM.

Similar content being viewed by others

Data availability

All datasets have been deposited and made publicly available: the quantitative proteomics mass-spectrometry data on protein from MDA-MB-231 and SCP2 cells that support the findings of this study have been deposited to the ProteomeXchange Consortium (https://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD059452; the RNA sequencing data have been deposited in the NCBI Sequence Read Archive (SRA) under the BioProject Accession No. PRJNA1206327. The datasets used and/or analysis during the current study are available from the corresponding author on reasonable request.

Change history

  • 09 May 2025

    Affiliation 2, Department of Oncology, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China, has been moved to 1st affiliation.

References

  1. Lu J, Steeg PS, Price JE, Krishnamurthy S, Mani SA, Reuben J, et al. Breast cancer metastasis: challenges and opportunities. Cancer Res. 2009;69:4951–3.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  3. Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin Cancer Biol. 2020;60:14–27.

    Article  CAS  PubMed  Google Scholar 

  4. Kuchuk I, Hutton B, Moretto P, Ng T, Addison CL, Clemons M. Incidence, consequences and treatment of bone metastases in breast cancer patients-Experience from a single cancer centre. J Bone Oncol. 2013;2:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsuzuki S, Park SH, Eber MR, Peters CM, Shiozawa Y. Skeletal complications in cancer patients with bone metastases. Int J Urol. 2016;23:825–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chatziravdeli V, Katsaras GN, Katsaras D, Doxani C, Stefanidis I, Zintzaras E. A systematic review and meta-analysis of interventional studies of bisphosphonates and denosumab in multiple myeloma and future perspectives. J Musculoskelet Neuronal Interact. 2022;22:596–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.

    Article  CAS  PubMed  Google Scholar 

  8. Domschke C, Schuetz F. Side effects of bone-targeted therapies in advanced breast cancer. Breast Care. 2014;9:332–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:5132–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hirbe A, Morgan EA, Uluckan O, Weilbaecher K. Skeletal complications of breast cancer therapies. Clin Cancer Res. 2006;12:6309s–6314s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.

    Article  CAS  PubMed  Google Scholar 

  12. Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 2020;9:2073.

  13. Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, Nicholas RW, et al. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res. 2002;62:5571–9.

    CAS  PubMed  Google Scholar 

  14. Dong G, Chen Z, Li ZY, Yeh NT, Bancroft CC, Van Waes C. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res. 2001;61:5911–8.

    CAS  PubMed  Google Scholar 

  15. Ohshiba T, Miyaura C, Inada M, Ito A. Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br J Cancer. 2003;88:1318–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shimo T, Kubota S, Yoshioka N, Ibaragi S, Isowa S, Eguchi T, et al. Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. J Bone Min Res. 2006;21:1045–59.

    Article  CAS  Google Scholar 

  17. Aldridge SE, Lennard TW, Williams JR, Birch MA. Vascular endothelial growth factor acts as an osteolytic factor in breast cancer metastases to bone. Br J Cancer. 2005;92:1531–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakamura I, Pilkington MF, Lakkakorpi PT, Lipfert L, Sims SM, Dixon SJ, et al. Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone. J Cell Sci. 1999;112:3985–93.

    Article  CAS  PubMed  Google Scholar 

  19. Duong LT, Lakkakorpi P, Nakamura I, Rodan GA. Integrins and signaling in osteoclast function. Matrix Biol. 2000;19:97–105.

    Article  CAS  PubMed  Google Scholar 

  20. Jung YK, Han SW, Kim GW, Jeong JH, Kim HJ, Choi JY. DICAM inhibits osteoclast differentiation through attenuation of the integrin alphaVbeta3 pathway. J Bone Min Res. 2012;27:2024–34.

    Article  CAS  Google Scholar 

  21. Carron CP, Meyer DM, Engleman VW, Rico JG, Ruminski PG, Ornberg RL, et al. Peptidomimetic antagonists of alphavbeta3 inhibit bone resorption by inhibiting osteoclast bone resorptive activity, not osteoclast adhesion to bone. J Endocrinol. 2000;165:587–98.

    Article  CAS  PubMed  Google Scholar 

  22. Lin TH, Yang RS, Tu HJ, Liou HC, Lin YM, Chuang WJ, et al. Inhibition of osteoporosis by the alphavbeta3 integrin antagonist of rhodostomin variants. Eur J Pharm. 2017;804:94–101.

    Article  CAS  Google Scholar 

  23. Nakamura I, Duong LT, Rodan SB, Rodan GA. Involvement of alpha(v)beta3 integrins in osteoclast function. J Bone Min Metab. 2007;25:337–44.

    Article  CAS  Google Scholar 

  24. Miyauchi A, Alvarez J, Greenfield EM, Teti A, Grano M, Colucci S, et al. Recognition of osteopontin and related peptides by an alpha v beta 3 integrin stimulates immediate cell signals in osteoclasts. J Biol Chem. 1991;266:20369–74.

    Article  CAS  PubMed  Google Scholar 

  25. Zou W, Kitaura H, Reeve J, Long F, Tybulewicz VL, Shattil SJ, et al. Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol. 2007;176:877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, et al. Vav3 regulates osteoclast function and bone mass. Nat Med. 2005;11:284–90.

    Article  CAS  PubMed  Google Scholar 

  27. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ni S, Yuan Y, Qian Z, Zhong Z, Lv T, Kuang Y, et al. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic Biol Med. 2021;169:271–82.

    Article  CAS  PubMed  Google Scholar 

  29. He Y, Zou P, Lu Y, Jia D, Li X, Yang H, et al. Osteoprotegerin promotes intimal hyperplasia and contributes to in-stent restenosis: Role of an alphaVbeta3/FAK dependent YAP pathway. J Mol Cell Cardiol. 2020;139:1–13.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Zheng Y, Wang Y, Wang J, Sang A, Song X, et al. YAP1 alleviates sepsis-induced acute lung injury via inhibiting ferritinophagy-mediated ferroptosis. Front Immunol. 2022;13:884362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi SW, Kim HW, Nam JW. The small peptide world in long noncoding RNAs. Brief Bioinf. 2019;20:1853–64.

    Article  CAS  Google Scholar 

  32. Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. Long non-coding RNAs as a source of new peptides. Elife. 2014;3:e03523.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Plaza S, Menschaert G, Payre F. In Search of lost small peptides. Annu Rev Cell Dev Biol. 2017;33:391–416.

    Article  CAS  PubMed  Google Scholar 

  34. Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol. 2013;9:59–64.

    Article  CAS  PubMed  Google Scholar 

  35. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228–32.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Long W, Yang L, Zhao Y, Wu X, Li M, et al. Functional peptides encoded by long non-coding RNAs in gastrointestinal cancer. Front Oncol. 2021;11:777374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, Qu L, Sang L, Wu X, Jiang A, Liu J, et al. Micropeptides translated from putative long non-coding RNAs. Acta Biochim Biophys Sin. 2022;54:292–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo B, Wu S, Zhu X, Zhang L, Deng J, Li F, et al. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J. 2020;39:e102190.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Wu S, Zhu X, Zhang L, Deng J, Li F, et al. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med 2020;217:jem.20190950.

  40. Tan Z, Zhao L, Huang S, Jiang Q, Wei Y, Wu JL, et al. Small peptide LINC00511-133aa encoded by LINC00511 regulates breast cancer cell invasion and stemness through the Wnt/beta-catenin pathway. Mol Cell Probes. 2023;69:101913.

    Article  CAS  PubMed  Google Scholar 

  41. Rossi M, Bucci G, Rizzotto D, Bordo D, Marzi MJ, Puppo M, et al. LncRNA EPR controls epithelial proliferation by coordinating Cdkn1a transcription and mRNA decay response to TGF-b. Nat Commun. 2019;10:1969.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang YF, Liu LJ, Xu F, Shang MY, Liu GX, Cai SQ. Investigation of the In Vivo Metabolism of Sibirioside A and Angoroside C in Rats by HPLC-ESI-IT-TOF-MS(n). Molecules 2018;23:2702.

  43. Marino S, Logan JG, Mellis D, Capulli M. Generation and culture of osteoclasts. Bonekey Rep. 2014;3:570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abudourousuli A, Chen S, Hu Y, Qian W, Liao X, Xu Y, et al. NKX2-8/PTHrP Axis-mediated osteoclastogenesis and bone metastasis in breast cancer. Front Oncol. 2022;12:907000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blanco MA, LeRoy G, Khan Z, Aleckovic M, Zee BM, Garcia BA, et al. Global secretome analysis identifies novel mediators of bone metastasis. Cell Res. 2012;22:1339–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115:44–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4:638–49.

    Article  CAS  PubMed  Google Scholar 

  48. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA. 2014;111:16836–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020;22:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marazzi F, Orlandi A, Manfrida S, Masiello V, Di Leone A, Massaccesi M, et al. Diagnosis and treatment of bone metastases in breast cancer: radiotherapy, local approach and systemic therapy in a guide for clinicians. Cancers 2020;12:2390.

  52. Pang L, Gan C, Xu J, Jia Y, Chai J, Huang R, et al. Bone metastasis of breast cancer: molecular mechanisms and therapeutic strategies. Cancers 2022;14:5727.

  53. Beuzeboc P, Scholl S. Prevention of bone metastases in breast cancer patients. therapeutic perspectives. J Clin Med. 2014;3:521–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coleman RE, Croucher PI, Padhani AR, Clezardin P, Chow E, Fallon M, et al. Bone metastases. Nat Rev Dis Prim. 2020;6:83.

    Article  PubMed  Google Scholar 

  55. Michigami T, Hiraga T, Williams PJ, Niewolna M, Nishimura R, Mundy GR, et al. The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs. Breast Cancer Res Treat. 2002;75:249–58.

    Article  CAS  PubMed  Google Scholar 

  56. Niibe K, Ouchi T, Iwasaki R, Nakagawa T, Horie N. Osteonecrosis of the jaw in patients with dental prostheses being treated with bisphosphonates or denosumab. J Prosthodont Res. 2015;59:3–5.

    Article  PubMed  Google Scholar 

  57. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li B, Lee WC, Song C, Ye L, Abel ED, Long F. Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation. FASEB J. 2020;34:11058–67.

    Article  CAS  PubMed  Google Scholar 

  59. Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, et al. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 2009;15:259–66.

    Article  CAS  PubMed  Google Scholar 

  60. Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood. 2005;106:852–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (no.2022A1515111204 and 2023A1515110051), Natural Science Foundation of China (no. 82303401, 82330082 and 82030078), the Fundamental Research Funds for Shenzhen Medical Research Fund (B2302046) and Guangzhou Municipal Science and Technology Project (2024A04J3475 and 2025A03J3756). We would like to thank Prof. Guohong Hu of the Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine for kindly providing the SCP2 cell lines.

Author information

Authors and Affiliations

Authors

Contributions

SXZ: funding acquisition, project administration, manuscript review and editing; GYW: funding acquisition, experimental design, study supervision; SWC: writing original draft, data analysis; MLT: performing the experiments, data analysis; XXY: provision of patient tissue samples, clinical data analysis; WYQ: mice experiments; YRX: funding acquisition, experimental assistance; JL: funding acquisition.

Corresponding authors

Correspondence to Geyan Wu or Shuxia Zhang.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulation. All animal procedures were approved by the Sun Yat-sen University Institutional Animal Care and Use Committee (Approval No. SYSU-IACUC-2022-001151). And the research involving human tissues was approved by the Clinical Research of the First Affiliated Hospital of Sun Yat-sen University Ethical Committee. All patient samples were collected in accordance with the Declaration of Helsinki, with written informed consent obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Tang, M., Yu, X. et al. A microprotein encoded by LINC00263 promotes breast cancer osteolytic bone metastasis by inducing osteoclastogenesis and inhibiting osteoclast ferroptosis. Oncogene 44, 2201–2216 (2025). https://doi.org/10.1038/s41388-025-03400-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03400-5

Search

Quick links