Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-translational modifications in DNA damage repair: mechanisms underlying temozolomide resistance in glioblastoma

Abstract

Temozolomide (TMZ) resistance is one of the critical factors contributing to the poor prognosis of glioblastoma (GBM). As a first-line chemotherapeutic agent for GBM, TMZ exerts its cytotoxic effects through DNA alkylation. However, its therapeutic efficacy is significantly compromised by enhanced DNA damage repair (DDR) mechanisms in GBM cells. Although several DDR-targeting drugs have been developed, their clinical outcomes remain suboptimal. Post-translational modifications (PTMs) in GBM cells play a pivotal role in maintaining the genomic stability of DDR mechanisms, including methylguanine-DNA methyltransferase-mediated repair, DNA mismatch repair dysfunction, base excision repair, and double-strand break repair. This review focuses on elucidating the regulatory roles of PTMs in the intrinsic mechanisms underlying TMZ resistance in GBM. Furthermore, we explore the feasibility of enhancing TMZ-induced cytotoxicity by targeting PTM-related enzymatic to disrupt key steps in PTM-mediated DDR pathways. By integrating current preclinical insights and clinical challenges, this work highlights the potential of modulating PTM-driven networks as a novel therapeutic strategy to overcome TMZ resistance and improve treatment outcomes for GBM patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA repair mechanisms in TMZ-resistant glioblastoma.

Similar content being viewed by others

References

  1. Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int. 2014;5:64.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Stevens MF, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharm. 2012;5:102–14.

    Article  CAS  Google Scholar 

  4. Delello Di Filippo L, Hofstätter Azambuja J, Paes Dutra JA, Tavares Luiz M, Lobato Duarte J, Nicoleti LR, et al. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur J Pharm Biopharm. 2021;168:76–89.

    Article  CAS  PubMed  Google Scholar 

  5. Jiapaer S, Furuta T, Tanaka S, Kitabayashi T, Nakada M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol Med-Chir. 2018;58:405–21.

    Article  Google Scholar 

  6. Wu H, Gao W, Chen P, Wei Y, Zhao H, Wang F. Research progress of drug resistance mechanism of temozolomide in the treatment of glioblastoma. Heliyon. 2024;10:e39984.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johannessen TC, Bjerkvig R. Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther. 2012;12:635–42.

    Article  CAS  PubMed  Google Scholar 

  8. Alejo S, Palacios BE, Venkata PP, He Y, Li W, Johnson JD, et al. Lysine-specific histone demethylase 1A (KDM1A/LSD1) inhibition attenuates DNA double-strand break repair and augments the efficacy of temozolomide in glioblastoma. Neuro-Oncol. 2023;25:1249–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wedge SR, Porteus JK, May BL, Newlands ES. Potentiation of temozolomide and BCNU cytotoxicity by O(6)-benzylguanine: a comparative study in vitro. Br J Cancer. 1996;73:482–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu S, Li X, Gao F, de Groot JF, Koul D, Yung WKA. PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro-Oncol. 2021;23:920–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bi Y, Li H, Yi D, Bai Y, Zhong S, Liu Q, et al. β-catenin contributes to cordycepin-induced MGMT inhibition and reduction of temozolomide resistance in glioma cells by increasing intracellular reactive oxygen species. Cancer Lett. 2018;435:66–79.

    Article  CAS  PubMed  Google Scholar 

  12. Tsai CY, Ko HJ, Chiou SJ, Lai YL, Hou CC, Javaria T, et al. NBM-BMX, an HDAC8 inhibitor, overcomes temozolomide resistance in glioblastoma multiforme by downregulating the β-Catenin/c-Myc/SOX2 pathway and upregulating p53-mediated MGMT Inhibition. Int J Mol Sci. 2021;22.

  13. Yu Z, Chen Y, Wang S, Li P, Zhou G, Yuan Y. Inhibition of NF-κB results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression. Cancer Lett. 2018;428:77–89.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao J, Yang S, Cui X, Wang Q, Yang E, Tong F, et al. A novel compound EPIC-0412 reverses temozolomide resistance via inhibiting DNA repair/MGMT in glioblastoma. Neuro-Oncol. 2023;25:857–70.

    Article  PubMed  Google Scholar 

  15. Blumenthal DT, Rankin C, Stelzer KJ, Spence AM, Sloan AE, Moore DF Jr, et al. A Phase III study of radiation therapy (RT) and O6-benzylguanine + BCNU versus RT and BCNU alone and methylation status in newly diagnosed glioblastoma and gliosarcoma: Southwest Oncology Group (SWOG) study S0001. Int J Clin Oncol. 2015;20:650–8.

    Article  CAS  PubMed  Google Scholar 

  16. Goellner EM, Grimme B, Brown AR, Lin YC, Wang XH, Sugrue KF, et al. Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. Cancer Res. 2011;71:2308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu Y, Yang B, Cui Y, Hu X, Li X, Lu F, et al. BRD4 inhibition impairs DNA mismatch repair, induces mismatch repair mutation signatures and creates therapeutic vulnerability to immune checkpoint blockade in MMR-proficient tumors. J Immunother Cancer. 2023;11.

  18. Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Asp Med. 2022;86:101097.

    Article  CAS  Google Scholar 

  19. Huang KY, Lee TY, Kao HJ, Ma CT, Lee CC, Lin TH, et al. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications. Nucleic Acids Res. 2019;47:D298–d308.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021;20:551–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen TTT, Zhang Y, Shang E, Shu C, Torrini C, Zhao J, et al. HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. J Clin Investig. 2020;130:3699–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang DW, Hwang WC, Noh YN, Kang Y, Jang Y, Kim JA, et al. Phospholipase D1 is upregulated by vorinostat and confers resistance to vorinostat in glioblastoma. J Cell Physiol. 2021;236:549–60.

    Article  CAS  PubMed  Google Scholar 

  23. Lu Y, Feng Y, Li Z, Li J, Zhang H, Hu X, et al. Novel piperazine based benzamide derivatives as potential anti-glioblastoma agents inhibiting cell proliferation and cell cycle progression. Eur J Med Chem. 2022;227:113908.

    Article  CAS  PubMed  Google Scholar 

  24. Fricker LD. Proteasome inhibitor drugs. Annu Rev Pharm Toxicol. 2020;60:457–76.

    Article  CAS  Google Scholar 

  25. Tang JH, Yang L, Chen JX, Li QR, Zhu LR, Xu QF, et al. Bortezomib inhibits growth and sensitizes glioma to temozolomide (TMZ) via down-regulating the FOXM1-Survivin axis. Cancer Commun. 2019;39:81.

    Article  Google Scholar 

  26. Poklepovic AS, Shah P, Tombes MB, Shrader E, Bandyopadhyay D, Deng X, et al. Phase 2 Study of Sorafenib, Valproic Acid, and Sildenafil in the Treatment of Recurrent High-Grade Glioma. medRxiv : the preprint server for health sciences. 2024.

  27. Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev. 2022;51:5691–730.

    Article  CAS  PubMed  Google Scholar 

  28. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995;80:225–36.

    Article  CAS  PubMed  Google Scholar 

  29. Gadkari VV, Harvey SR, Raper AT, Chu WT, Wang J, Wysocki VH, et al. Investigation of sliding DNA clamp dynamics by single-molecule fluorescence, mass spectrometry and structure-based modeling. Nucleic Acids Res. 2018;46:3103–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell. 2007;129:665–79.

    Article  CAS  PubMed  Google Scholar 

  31. Ortega J, Li JY, Lee S, Tong D, Gu L, Li GM. Phosphorylation of PCNA by EGFR inhibits mismatch repair and promotes misincorporation during DNA synthesis. Proc Natl Acad Sci USA. 2015;112:5667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Christmann M, Tomicic MT, Kaina B. Phosphorylation of mismatch repair proteins MSH2 and MSH6 affecting MutSalpha mismatch-binding activity. Nucleic Acids Res. 2002;30:1959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Romeo F, Falbo L, Di Sanzo M, Misaggi R, Faniello MC, Viglietto G, et al. BRCA1 is required for hMLH1 stabilization following doxorubicin-induced DNA damage. Int J Biochem Cell Biol. 2011;43:1754–63.

    Article  CAS  PubMed  Google Scholar 

  34. Weßbecher IM, Hinrichsen I, Funke S, Oellerich T, Plotz G, Zeuzem S, et al. DNA mismatch repair activity of MutLα is regulated by CK2-dependent phosphorylation of MLH1 (S477). Mol Carcinogen. 2018;57:1723–34.

    Article  Google Scholar 

  35. Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A set of tightly regulated enzymes with a high potential as anticancer drug targets. Int J Mol Sciences. 2020;21.

  36. Campalans A, Marsin S, Nakabeppu Y, O’Connor TR, Boiteux S, Radicella JP. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair. DNA repair. 2005;4:826–35.

    Article  CAS  PubMed  Google Scholar 

  37. Chou WC, Wang HC, Wong FH, Ding SL, Wu PE, Shieh SY, et al. Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J. 2008;27:3140–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ström CE, Mortusewicz O, Finch D, Parsons JL, Lagerqvist A, Johansson F, et al. CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair. DNA Repair. 2011;10:961–9.

    Article  PubMed  Google Scholar 

  39. Yang M, Wang C, Zhou M, Bao L, Wang Y, Kumar A, et al. KDM6B promotes PARthanatos via suppression of O6-methylguanine DNA methyltransferase repair and sustained checkpoint response. Nucleic Acids Res. 2022;50:6313–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prakash A, Cao VB, Doublié S. Phosphorylation Sites Identified in the NEIL1 DNA glycosylase are potential targets for the JNK1 Kinase. PLOS ONE. 2016;11:e0157860.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Myrup Holst C, Brøndum Andersen N, Thinggaard V, Tilken M, Lautrup S, Tesauro C, et al. Phosphorylation of the Human DNA Glycosylase NEIL2 is affected by oxidative stress and modulates its activity. Antioxidants. 2023;12.

  42. Choi JE, Matthews AJ, Michel G, Vuong BQ. AID phosphorylation regulates mismatch repair-dependent class switch recombination and affinity maturation. J Immunol. 2020;204:13–22.

    Article  CAS  PubMed  Google Scholar 

  43. Wimmer U, Ferrari E, Hunziker P, Hübscher U. Control of DNA polymerase lambda stability by phosphorylation and ubiquitination during the cell cycle. EMBO Rep. 2008;9:1027–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang E, Qu D, Zhang Y, Venderova K, Haque ME, Rousseaux MW, et al. The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat Cell Biol. 2010;12:563–71.

    Article  CAS  PubMed  Google Scholar 

  45. Yacoub A, Kelley MR, Deutsch WA. The DNA repair activity of human redox/repair protein APE/Ref-1 is inactivated by phosphorylation. Cancer Res. 1997;57:5457–9.

    CAS  PubMed  Google Scholar 

  46. Fritz G, Kaina B. Phosphorylation of the DNA repair protein APE/REF-1 by CKII affects redox regulation of AP-1. Oncogene. 1999;18:1033–40.

    Article  CAS  PubMed  Google Scholar 

  47. Hsieh MM, Hegde V, Kelley MR, Deutsch WA. Activation of APE/Ref-1 redox activity is mediated by reactive oxygen species and PKC phosphorylation. Nucleic Acids Res. 2001;29:3116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Mol Cell. 2017;66:801–17.

    Article  CAS  PubMed  Google Scholar 

  49. Goff NJ, Mikhova M, Schmidt JC, Meek K. DNA-PK: A synopsis beyond synapsis. DNA Repair. 2024;141:103716.

    Article  CAS  PubMed  Google Scholar 

  50. Chan DW, Chen BP, Prithivirajsingh S, Kurimasa A, Story MD, Qin J, et al. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev. 2002;16:2333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Douglas P, Sapkota GP, Morrice N, Yu Y, Goodarzi AA, Merkle D, et al. Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase. Biochem J. 2002;368:243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jette N, Lees-Miller SP. The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol. 2015;117:194–205.

    Article  CAS  PubMed  Google Scholar 

  53. Ma J, Benitez JA, Li J, Miki S, Ponte de Albuquerque C, Galatro T, et al. Inhibition of Nuclear PTEN Tyrosine Phosphorylation Enhances Glioma Radiation Sensitivity through Attenuated DNA Repair. Cancer Cell. 2019;35:504–18.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu X, Li P, Hirayama R, Niu Y, Liu X, Chen W, et al. Genistein sensitizes glioblastoma cells to carbon ions via inhibiting DNA-PKcs phosphorylation and subsequently repressing NHEJ and delaying HR repair pathways. Radiother Oncol: J Eur Soc Ther Radio Oncol. 2018;129:84–94.

    Article  CAS  Google Scholar 

  55. Tomimatsu N, Mukherjee B, Catherine Hardebeck M, Ilcheva M, Vanessa Camacho C, Louise Harris J, et al. Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat Commun. 2014;5:3561.

    Article  PubMed  Google Scholar 

  56. El-Shemerly M, Hess D, Pyakurel AK, Moselhy S, Ferrari S. ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic Acids Res. 2008;36:511–9.

    Article  CAS  PubMed  Google Scholar 

  57. Yin J, Wang X, Ge X, Ding F, Shi Z, Ge Z, et al. Hypoxanthine phosphoribosyl transferase 1 metabolizes temozolomide to activate AMPK for driving chemoresistance of glioblastomas. Nat Commun. 2023;14:5913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Y, Yi K, Liu X, Tan Y, Jin W, Li Y, et al. HOTAIR Up-Regulation activates NF-κB to induce immunoescape in gliomas. Front Immunol. 2021;12:785463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tong F, Zhao JX, Fang ZY, Cui XT, Su DY, Liu X, et al. MUC1 promotes glioblastoma progression and TMZ resistance by stabilizing EGFRvIII. Pharm Res. 2023;187:106606.

    Article  CAS  Google Scholar 

  60. Meng X, Zhao Y, Han B, Zha C, Zhang Y, Li Z, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun. 2020;11:594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kodama M, Otsubo C, Hirota T, Yokota J, Enari M, Taya Y. Requirement of ATM for rapid p53 phosphorylation at Ser46 without Ser/Thr-Gln sequences. Mol Cell Biol. 2010;30:1620–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Flassig RJ, Maubach G, Täger C, Sundmacher K, Naumann M. Experimental design, validation and computational modeling uncover DNA damage sensing by DNA-PK and ATM. Mol Biosyst. 2014;10:1978–86.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem. 2010;285:37159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24:72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin WH, Feathers RW, Cooper LM, Lewis-Tuffin LJ, Chen J, Sarkaria JN, et al. A Syx-RhoA-Dia1 signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in glioblastoma. JCI insight. 2023;8:e157491.

  67. Liu Y, Du Z, Xu Z, Jin T, Xu K, Huang M, et al. Overexpressed GNA13 induces temozolomide sensitization via down-regulating MGMT and p-RELA in glioma. Am J Transl Res. 2021;13:11413–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Singh K, Han C, Fleming JL, Becker AP, McElroy J, Cui T, et al. TRIB1 confers therapeutic resistance in GBM cells by activating the ERK and Akt pathways. Sci Rep. 2023;13:12424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang Z, Gong T, Wei H. CDKL5 promotes proliferation, migration, and chemotherapeutic drug resistance of glioma cells via activation of the PI3K/AKT signaling pathway. FEBS Open Bio. 2020;10:268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li Z, Meng X, Wu P, Zha C, Han B, Li L, et al. Glioblastoma cell-derived lncRNA-containing exosomes induce microglia to produce complement C5, promoting chemotherapy resistance. Cancer Immunol Res. 2021;9:1383–99.

    Article  CAS  PubMed  Google Scholar 

  71. Meng X, Duan C, Pang H, Chen Q, Han B, Zha C, et al. DNA damage repair alterations modulate M2 polarization of microglia to remodel the tumor microenvironment via the p53-mediated MDK expression in glioma. EBioMedicine. 2019;41:185–99.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chen Y, Xu X, Ding K, Tang T, Cai F, Zhang H, et al. TRIM25 promotes glioblastoma cell growth and invasion via regulation of the PRMT1/c-MYC pathway by targeting the splicing factor NONO. J Exp Clin cancer Res : CR. 2024;43:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Akutsu M, Dikic I, Bremm A. Ubiquitin chain diversity at a glance. J cell Sci. 2016;129:875–80.

    Article  CAS  PubMed  Google Scholar 

  74. Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016;26:399–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rahman S, Wolberger C. Breaking the K48-chain: linking ubiquitin beyond protein degradation. Nat Struct Mol Biol. 2024;31:216–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ji J, Ding K, Luo T, Zhang X, Chen A, Zhang D, et al. TRIM22 activates NF-κB signaling in glioblastoma by accelerating the degradation of IκBα. Cell Death Differ. 2021;28:367–81.

    Article  CAS  PubMed  Google Scholar 

  77. Srivenugopal KS, Yuan XH, Friedman HS, Ali-Osman F. Ubiquitination-dependent proteolysis of O6-methylguanine-DNA methyltransferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochemistry. 1996;35:1328–34.

    Article  CAS  PubMed  Google Scholar 

  78. Srivenugopal KS, Rawat A, Niture SK, Paranjpe A, Velu C, Venugopal SN, et al. Posttranslational Regulation of O(6)-Methylguanine-DNA Methyltransferase (MGMT) and new opportunities for treatment of brain cancers. Mini reviews. Med Chem. 2016;16:455–64.

    CAS  Google Scholar 

  79. Hsu SH, Chen SH, Kuo CC, Chang JY. Ubiquitin-conjugating enzyme E2 B regulates the ubiquitination of O(6)-methylguanine-DNA methyltransferase and BCNU sensitivity in human nasopharyngeal carcinoma cells. Biochem Pharm. 2018;158:327–38.

    Article  CAS  PubMed  Google Scholar 

  80. Li X, Yang C, Luo N, Yang Y, Guo Y, Chen P, et al. Ubiquitination and degradation of MGMT by TRIM72 increases the sensitivity of uveal melanoma cells to Dacarbazine treatment. Cancer Biomark: Sect A Dis Markers. 2022;34:275–84.

    Article  CAS  Google Scholar 

  81. Arlow T, Kim J, Haye-Bertolozzi JE, Martínez CB, Fay C, Zorensky E, et al. MutSα mismatch repair protein stability is governed by subunit interaction, acetylation, and ubiquitination. G3 (Bethesda, Md). 2021;11:jkaa065.

  82. Zhang M, Xiang S, Joo HY, Wang L, Williams KA, Liu W, et al. HDAC6 deacetylates and ubiquitinates MSH2 to maintain proper levels of MutSα. Mol Cell. 2014;55:31–46.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem. 2021;296:100466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fantini D, Moritz E, Auvré F, Amouroux R, Campalans A, Epe B, et al. Rapid inactivation and proteasome-mediated degradation of OGG1 contribute to the synergistic effect of hyperthermia on genotoxic treatments. DNA Repair. 2013;12:227–37.

    Article  CAS  PubMed  Google Scholar 

  85. Parsons JL, Tait PS, Finch D, Dianova II, Allinson SL, Dianov GL. CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol Cell. 2008;29:477–87.

    Article  CAS  PubMed  Google Scholar 

  86. Dorn J, Ferrari E, Imhof R, Ziegler N, Hübscher U. Regulation of human MutYH DNA glycosylase by the E3 ubiquitin ligase mule. J Biol Chem. 2014;289:7049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Meisenberg C, Tait PS, Dianova II, Wright K, Edelmann MJ, Ternette N, et al. Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability. Nucleic Acids Res. 2012;40:701–11.

    Article  CAS  PubMed  Google Scholar 

  88. Busso CS, Iwakuma T, Izumi T. Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene. 2009;28:1616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu X, Xu B, Yang J, He L, Zhang Z, Cheng X, et al. UHRF2 commissions the completion of DNA demethylation through allosteric activation by 5hmC and K33-linked ubiquitination of XRCC1. Mol Cell. 2021;81:2960–74.e7.

    Article  CAS  PubMed  Google Scholar 

  90. Mosbech A, Lukas C, Bekker-Jensen S, Mailand N. The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J Biol Chem. 2013;288:16579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nowsheen S, Aziz K, Aziz A, Deng M, Qin B, Luo K, et al. L3MBTL2 orchestrates ubiquitin signalling by dictating the sequential recruitment of RNF8 and RNF168 after DNA damage. Nat Cell Biol. 2018;20:455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, et al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell. 2012;150:1182–95.

    Article  CAS  PubMed  Google Scholar 

  93. Bohgaki M, Bohgaki T, El Ghamrasni S, Srikumar T, Maire G, Panier S, et al. RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks. Proc Natl Acad Sci USA. 2013;110:20982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pei H, Zhang L, Luo K, Qin Y, Chesi M, Fei F, et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature. 2011;470:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim H, Chen J, Yu X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science. 2007;316:1202–5.

    Article  CAS  PubMed  Google Scholar 

  96. Yan J, Kim YS, Yang XP, Li LP, Liao G, Xia F, et al. The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res. 2007;67:6647–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hu Q, Botuyan MV, Cui G, Zhao D, Mer G. Mechanisms of Ubiquitin-Nucleosome recognition and regulation of 53BP1 Chromatin recruitment by RNF168/169 and RAD18. Mol Cell. 2017;66:473–87.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kitevski-LeBlanc J, Fradet-Turcotte A, Kukic P, Wilson MD, Portella G, Yuwen T, et al. The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. eLife. 2017;6:e23872.

  99. Räschle M, Smeenk G, Hansen RK, Temu T, Oka Y, Hein MY, et al. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science. 2015;348:1253671.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lafranchi L, de Boer HR, de Vries EG, Ong SE, Sartori AA, van Vugt MA. APC/C(Cdh1) controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J. 2014;33:2860–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schmidt CK, Galanty Y, Sczaniecka-Clift M, Coates J, Jhujh S, Demir M, et al. Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair. Nat Cell Biol. 2015;17:1458–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ismail IH, Gagné JP, Genois MM, Strickfaden H, McDonald D, Xu Z, et al. The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nat Cell Biol. 2015;17:1446–57.

    Article  CAS  PubMed  Google Scholar 

  103. Feng L, Chen J. The E3 ligase RNF8 regulates KU80 removal and NHEJ repair. Nat Struct Mol Biol. 2012;19:201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang H, Liu H, Chen Y, Yang X, Wang P, Liu T, et al. A cell cycle-dependent BRCA1-UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nat Commun. 2016;7:10201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao M, Guo G, Huang J, Kloeber JA, Zhao F, Deng M, et al. USP52 regulates DNA end resection and chemosensitivity through removing inhibitory ubiquitination from CtIP. Nat Commun. 2020;11:5362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Luo K, Li L, Li Y, Wu C, Yin Y, Chen Y, et al. A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes Dev. 2016;30:2581–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Peng C, Chen Z, Wang S, Wang HW, Qiu W, Zhao L, et al. The Error-Prone DNA Polymerase κ Promotes Temozolomide Resistance in Glioblastoma through Rad17-Dependent Activation of ATR-Chk1 Signaling. Cancer Res. 2016;76:2340–53.

    Article  CAS  PubMed  Google Scholar 

  108. Lin J, Ji A, Qiu G, Feng H, Li J, Li S, et al. FBW7 is associated with prognosis, inhibits malignancies and enhances temozolomide sensitivity in glioblastoma cells. Cancer Sci. 2018;109:1001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maksoud S. The role of the ubiquitin proteasome system in glioma: analysis emphasizing the main molecular players and therapeutic strategies identified in Glioblastoma Multiforme. Mol Neurobiol. 2021;58:3252–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou P, Peng X, Tang S, Zhang K, Tan Z, Li D, et al. E3 ligase MAEA-mediated ubiquitination and degradation of PHD3 promotes glioblastoma progression. Oncogene. 2023;42:1308–20.

    Article  CAS  PubMed  Google Scholar 

  111. Chang HM, Yeh ETH. SUMO: from bench to bedside. Physiol Rev. 2020;100:1599–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zalzman M, Meltzer WA, Portney BA, Brown RA, Gupta A. The Role of Ubiquitination and SUMOylation in Telomere Biology. Curr Issues Mol Biol. 2020;35:85–98.

    Article  PubMed  Google Scholar 

  113. Ma KW, Au SW, Waye MM. Over-expression of SUMO-1 induces the up-regulation of heterogeneous nuclear ribonucleoprotein A2/B1 isoform B1 (hnRNP A2/B1 isoform B1) and uracil DNA glycosylase (UDG) in hepG2 cells. Cell Biochem Funct. 2009;27:228–37.

    Article  CAS  PubMed  Google Scholar 

  114. Hardeland U, Steinacher R, Jiricny J, Schär P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 2002;21:1456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Smet-Nocca C, Wieruszeski JM, Léger H, Eilebrecht S, Benecke A. SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity. BMC Biochem. 2011;12:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mohan RD, Rao A, Gagliardi J, Tini M. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Mol Cell Biol. 2007;27:229–43.

    Article  CAS  PubMed  Google Scholar 

  117. Ryu H, Al-Ani G, Deckert K, Kirkpatrick D, Gygi SP, Dasso M, et al. PIASy mediates SUMO-2/3 conjugation of poly(ADP-ribose) polymerase 1 (PARP1) on mitotic chromosomes. J Biol Chem. 2010;285:14415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Guo Z, Kanjanapangka J, Liu N, Liu S, Liu C, Wu Z, et al. Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell. 2012;47:444–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang W, Wang L, Roehn G, Pearlstein RD, Ali-Osman F, Pan H, et al. Small ubiquitin-like modifier 1-3 conjugation [corrected] is activated in human astrocytic brain tumors and is required for glioblastoma cell survival. Cancer Sci. 2013;104:70–7.

    Article  CAS  PubMed  Google Scholar 

  120. Duheron V, Nilles N, Pecenko S, Martinelli V, Fahrenkrog B. Localisation of Nup153 and SENP1 to nuclear pore complexes is required for 53BP1-mediated DNA double-strand break repair. J Cell Sci. 2017;130:2306–16.

    Article  CAS  PubMed  Google Scholar 

  121. He J, Huang C, Guo Y, Deng R, Li L, Chen R, et al. PTEN-mediated dephosphorylation of 53BP1 confers cellular resistance to DNA damage in cancer cells. Mol Oncol. 2024;18:580–605.

    Article  CAS  PubMed  Google Scholar 

  122. Swift ML, Azizkhan-Clifford J. DNA damage-induced sumoylation of Sp1 induces its interaction with RNF4 and degradation in S phase to remove 53BP1 from DSBs and permit HR. DNA Repair. 2022;111:103289.

    Article  CAS  PubMed  Google Scholar 

  123. Han J, Wan L, Jiang G, Cao L, Xia F, Tian T, et al. ATM controls the extent of DNA end resection by eliciting sequential posttranslational modifications of CtIP. Proc Natl Acad Sci USA. 2021;118.

  124. Gao SS, Guan H, Yan S, Hu S, Song M, Guo ZP, et al. TIP60 K430 SUMOylation attenuates its interaction with DNA-PKcs in S-phase cells: Facilitating homologous recombination and emerging target for cancer therapy. Sci Adv. 2020;6:eaba7822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee D, Apelt K, Lee SO, Chan HR, Luijsterburg MS, Leung JWC, et al. ZMYM2 restricts 53BP1 at DNA double-strand breaks to favor BRCA1 loading and homologous recombination. Nucleic Acids Res. 2022;50:3922–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu Y, Parvin JD. Small ubiquitin-like modifier (SUMO) isoforms and conjugation-independent function in DNA double-strand break repair pathways. J Biol Chem. 2014;289:21289–95.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Garvin AJ, Walker AK, Densham RM, Chauhan AS, Stone HR, Mackay HL, et al. The deSUMOylase SENP2 coordinates homologous recombination and nonhomologous end joining by independent mechanisms. Genes Dev. 2019;33:333–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mai RT, Chao CH, Chang YW, Kao YC, Cheng Y, Hsu HY, et al. Sumoylation participates in the regulation of YB-1-mediated mismatch repair deficiency and alkylator tolerance. Am J Cancer Res. 2022;12:5462–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhao Y, He J, Li Y, Lv S, Cui H. NUSAP1 potentiates chemoresistance in glioblastoma through its SAP domain to stabilize ATR. Signal Transduct Target Ther. 2020;5:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu H, Weng W, Guo R, Zhou J, Xue J, Zhong S, et al. Olig2 SUMOylation protects against genotoxic damage response by antagonizing p53 gene targeting. Cell Death Differ. 2020;27:3146–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gil J, Ramírez-Torres A, Encarnación-Guevara S. Lysine acetylation and cancer: A proteomics perspective. J Proteom. 2017;150:297–309.

    Article  CAS  Google Scholar 

  132. Sheikh BN, Akhtar A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet. 2019;20:7–23.

    Article  CAS  PubMed  Google Scholar 

  133. Li P, Ge J, Li H. Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol. 2020;17:96–115.

    Article  CAS  PubMed  Google Scholar 

  134. Patel JH, Du Y, Ard PG, Phillips C, Carella B, Chen CJ, et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol. 2004;24:10826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kenneth NS, Ramsbottom BA, Gomez-Roman N, Marshall L, Cole PA, White RJ. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc Natl Acad Sci USA. 2007;104:14917–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pinkerneil M, Hoffmann MJ, Deenen R, Köhrer K, Arent T, Schulz WA, et al. Inhibition of Class I Histone Deacetylases 1 and 2 Promotes Urothelial Carcinoma Cell Death by Various Mechanisms. Mol Cancer Ther. 2016;15:299–312.

    Article  CAS  PubMed  Google Scholar 

  137. Adams H, Fritzsche FR, Dirnhofer S, Kristiansen G, Tzankov A. Class I histone deacetylases 1, 2 and 3 are highly expressed in classical Hodgkin’s lymphoma. Expert Opin Ther Targets. 2010;14:577–84.

    Article  CAS  PubMed  Google Scholar 

  138. Kaluza D, Kroll J, Gesierich S, Yao TP, Boon RA, Hergenreider E, et al. Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J. 2011;30:4142–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang M, Zhao J, Glazer PM, Bai W, Bepler G, Zhang XM. Acetylation of MLH1 by CBP increases cellular DNA mismatch repair activity. J Biochem. 2023;174:183–91.

    Article  CAS  PubMed  Google Scholar 

  140. Zhang M, Hu C, Moses N, Haakenson J, Xiang S, Quan D, et al. HDAC6 regulates DNA damage response via deacetylating MLH1. J Biol Chem. 2019;294:5813–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Radhakrishnan R, Li Y, Xiang S, Yuan F, Yuan Z, Telles E, et al. Histone deacetylase 10 regulates DNA mismatch repair and may involve the deacetylation of MutS homolog 2. J Biol Chem. 2015;290:22795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P. Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell. 2002;9:265–77.

    Article  CAS  PubMed  Google Scholar 

  143. Roychoudhury S, Pramanik S, Harris HL, Bhakat KK. Biochemical and cellular assays to assess the effects of acetylation on base excision repair enzymes. Methods Mol Biol (Clifton, NJ). 2019;1983:191–206.

    Article  CAS  Google Scholar 

  144. Bhakat KK, Hazra TK, Mitra S. Acetylation of the human DNA glycosylase NEIL2 and inhibition of its activity. Nucleic Acids Res. 2004;32:3033–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, et al. Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol Cell Biol. 2008;28:7066–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fantini D, Vascotto C, Marasco D, D’Ambrosio C, Romanello M, Vitagliano L, et al. Critical lysine residues within the overlooked N-terminal domain of human APE1 regulate its biological functions. Nucleic Acids Res. 2010;38:8239–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li M, Xiong J, Yang L, Huang J, Zhang Y, Liu M, et al. Acetylation of p62 regulates base excision repair through interaction with APE1. Cell Rep. 2022;40:111116.

    Article  CAS  PubMed  Google Scholar 

  148. Ogiwara H, Ui A, Otsuka A, Satoh H, Yokomi I, Nakajima S, et al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene. 2011;30:2135–46.

    Article  CAS  PubMed  Google Scholar 

  149. Swift ML, Beishline K, Azizkhan-Clifford J. Sp1-dependent recruitment of the histone acetylase p300 to DSBs facilitates chromatin remodeling and recruitment of the NHEJ repair factor Ku70. DNA repair. 2021;105:103171.

    Article  CAS  PubMed  Google Scholar 

  150. Kim KB, Kim DW, Park JW, Jeon YJ, Kim D, Rhee S, et al. Inhibition of Ku70 acetylation by INHAT subunit SET/TAF-Iβ regulates Ku70-mediated DNA damage response. Cell Mol Life Sci. 2014;71:2731–45.

    Article  CAS  PubMed  Google Scholar 

  151. Al Emam A, Arbon D, Jeeves M, Kysela B. Ku70 N-terminal lysines acetylation/deacetylation is required for radiation-induced DNA-double strand breaks repair. Neoplasma. 2018;65:708–19.

    Article  CAS  PubMed  Google Scholar 

  152. Mattoo AR, Jessup JM. MCL-1 interacts with MOF and BID to regulate H4K16 acetylation and homologous recombination repair. Cell Biol Int. 2022;46:1196–203.

    Article  CAS  PubMed  Google Scholar 

  153. Guo X, Bai Y, Zhao M, Zhou M, Shen Q, Yun CH, et al. Acetylation of 53BP1 dictates the DNA double strand break repair pathway. Nucleic Acids Res. 2018;46:689–703.

    Article  CAS  PubMed  Google Scholar 

  154. Yasuda T, Kagawa W, Ogi T, Kato TA, Suzuki T, Dohmae N, et al. Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites. PLoS Genet. 2018;14:e1007277.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Wang Z, Hu P, Tang F, Lian H, Chen X, Zhang Y, et al. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. Cancer Lett. 2016;379:134–42.

    Article  CAS  PubMed  Google Scholar 

  156. Kim GW, Lee DH, Yeon SK, Jeon YH, Yoo J, Lee SW, et al. Temozolomide-resistant Glioblastoma depends on HDAC6 activity through regulation of DNA mismatch repair. Anticancer Res. 2019;39:6731–41.

    Article  CAS  PubMed  Google Scholar 

  157. Chen YP, Hou XY, Yang CS, Jiang XX, Yang M, Xu XF, et al. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines. Tumour Biol: J Int Soc Oncodev Biol Med. 2016;37:11209–18.

    Article  CAS  Google Scholar 

  158. Wu P, Cai J, Chen Q, Han B, Meng X, Li Y, et al. Lnc-TALC promotes O(6)-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun. 2019;10:2045.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Nie E, Miao F, Jin X, Wu W, Zhou X, Zeng A, et al. Fstl1/DIP2A/MGMT signaling pathway plays important roles in temozolomide resistance in glioblastoma. Oncogene. 2019;38:2706–21.

    Article  CAS  PubMed  Google Scholar 

  160. Natsume A, Hirano M, Ranjit M, Aoki K, Wakabayashi T. Aberrant Transcriptional Regulation of Super-enhancers by RET Finger Protein-histone Deacetylase 1 Complex in Glioblastoma: Chemoresistance to Temozolomide. Neurologia Med-Chir. 2019;59:293–8.

    Article  Google Scholar 

  161. Wei H, Yu X. Functions of PARylation in DNA damage repair pathways. Genom Proteom Bioinforma. 2016;14:131–9.

    Article  CAS  Google Scholar 

  162. Zhang L, Zhuang Y, Tu G, Li D, Fan Y, Ye S, et al. Positive feedback regulation of Poly(ADP-ribose) Polymerase 1 and the DNA-PK catalytic subunit affects the sensitivity of nasopharyngeal carcinoma to etoposide. ACS Omega. 2022;7:2571–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH. Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res. 2012;40:4168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lodovichi S, Quadri R, Sertic S, Pellicioli A. PARylation of BRCA1 limits DNA break resection through BRCA2 and EXO1. Cell Rep. 2023;42:112060.

    Article  CAS  PubMed  Google Scholar 

  165. Molla S, Chatterjee S, Sethy C, Sinha S, Kundu CN. Olaparib enhances curcumin-mediated apoptosis in oral cancer cells by inducing PARP trapping through modulation of BER and chromatin assembly. DNA Repair. 2021;105:103157.

    Article  CAS  PubMed  Google Scholar 

  166. Li Y, Gao Z, Wang Y, Pang B, Zhang B, Hu R, et al. Lysine methylation promotes NFAT5 activation and determines temozolomide efficacy in glioblastoma. Nat Commun. 2023;14:4062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. El-Andaloussi N, Valovka T, Toueille M, Hassa PO, Gehrig P, Covic M, et al. Methylation of DNA polymerase beta by protein arginine methyltransferase 1 regulates its binding to proliferating cell nuclear antigen. FASEB J: Publ Fed Am Soc Exp Biol. 2007;21:26–34.

    Article  CAS  Google Scholar 

  168. Brown JS, Lukashchuk N, Sczaniecka-Clift M, Britton S, le Sage C, Calsou P, et al. Neddylation promotes ubiquitylation and release of Ku from DNA-damage sites. Cell Rep. 2015;11:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Brandt B, Németh M, Berta G, Szünstein M, Heffer M, Rauch TA, et al. A Promising way to overcome temozolomide resistance through inhibition of protein neddylation in glioblastoma cell lines. Int J Mol Sci. 2023;24:7929.

  170. Han Y, Zhao H, Li G, Jia J, Guo H, Tan J, et al. GCN5 mediates DNA-PKcs crotonylation for DNA double-strand break repair and determining cancer radiosensitivity. Br J Cancer. 2024;130:1621–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhao Y, Hao S, Wu W, Li Y, Hou K, Liu Y, et al. Lysine Crotonylation: An emerging player in DNA damage response. Biomolecules. 2022;12.

  172. Ma Y, Mu X, Gao R, Zhang Y, Geng Y, Chen X, et al. Maternal exposure to dibutyl phthalate regulates MSH6 crotonylation to impair homologous recombination in fetal oocytes. J Hazard Mater. 2023;455:131540.

    Article  CAS  PubMed  Google Scholar 

  173. Yue Q, Wang Z, Shen Y, Lan Y, Zhong X, Luo X, et al. Histone H3K9 lactylation confers Temozolomide resistance in Glioblastoma via LUC7L2-mediated MLH1 Intron retention. Adv Sci (Weinh, Baden-Wurtt, Ger). 2024;11:e2309290.

    Google Scholar 

  174. Efimova EV, Takahashi S, Shamsi NA, Wu D, Labay E, Ulanovskaya OA, et al. Linking cancer metabolism to DNA repair and accelerated senescence. Mol Cancer Res. 2016;14:173–84.

    Article  CAS  PubMed  Google Scholar 

  175. Efimova EV, Appelbe OK, Ricco N, Lee SS, Liu Y, Wolfgeher DJ, et al. O-GlcNAcylation enhances double-strand break repair, promotes cancer cell proliferation, and prevents therapy-induced senescence in irradiated tumors. Mol Cancer Res. 2019;17:1338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lafont F, Fleury F, Benhelli-Mokrani H. DNA-PKcs Ser2056 auto-phosphorylation is affected by an O-GlcNAcylation/phosphorylation interplay. Biochim et Biophys Acta Gen Subj. 2020;1864:129705.

    Article  CAS  Google Scholar 

  177. Ping X, Stark JM. O-GlcNAc transferase is important for homology-directed repair. DNA Repair. 2022;119:103394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC, Westphal M, et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer. 2011;129:659–70.

    Article  CAS  PubMed  Google Scholar 

  179. McFaline-Figueroa JL, Braun CJ, Stanciu M, Nagel ZD, Mazzucato P, Sangaraju D, et al. Minor changes in expression of the mismatch repair protein MSH2 exert a major impact on Glioblastoma response to Temozolomide. Cancer Res. 2015;75:3127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Indraccolo S, Lombardi G, Fassan M, Pasqualini L, Giunco S, Marcato R, et al. Genetic, epigenetic, and immunologic profiling of MMR-deficient relapsed glioblastoma. Clin Cancer Res: J Am Assoc Cancer Res. 2019;25:1828–37.

    Article  CAS  Google Scholar 

  181. Gallitto M, Cheng He R, Inocencio JF, Wang H, Zhang Y, Deikus G, et al. Epigenetic preconditioning with decitabine sensitizes glioblastoma to temozolomide via induction of MLH1. J Neuro-Oncol. 2020;147:557–66.

    Article  CAS  Google Scholar 

  182. Gelsomino F, Barbolini M, Spallanzani A, Pugliese G, Cascinu S. The evolving role of microsatellite instability in colorectal cancer: A review. Cancer Treat Rev. 2016;51:19–26.

    Article  CAS  PubMed  Google Scholar 

  183. Baretti M, Le DT. DNA mismatch repair in cancer. Pharm Ther. 2018;189:45–62.

    Article  CAS  Google Scholar 

  184. Kayhanian H, Cross W, van der Horst SEM, Barmpoutis P, Lakatos E, Caravagna G, et al. Homopolymer switches mediate adaptive mutability in mismatch repair-deficient colorectal cancer. Nat Genet. 2024;56:1420–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C. Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res. 2007;67:4595–604.

    Article  CAS  PubMed  Google Scholar 

  186. Baxter PA, Su JM, Onar-Thomas A, Billups CA, Li XN, Poussaint TY, et al. A phase I/II study of veliparib (ABT-888) with radiation and temozolomide in newly diagnosed diffuse pontine glioma: a Pediatric Brain Tumor Consortium study. Neuro-Oncol. 2020;22:875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kleinberg L, Ye X, Supko J, Stevens GHJ, Shu HK, Mikkelsen T, et al. A multi-site phase I trial of Veliparib with standard radiation and temozolomide in patients with newly diagnosed glioblastoma multiforme (GBM). J Neuro-Oncol. 2023;165:499–507.

    Article  CAS  Google Scholar 

  188. Hanna C, Kurian KM, Williams K, Watts C, Jackson A, Carruthers R, et al. Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial. Neuro-Oncol. 2020;22:1840–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang S, Peng X, Li X, Liu H, Zhao B, Elkabets M, et al. BKM120 sensitizes glioblastoma to the PARP inhibitor rucaparib by suppressing homologous recombination repair. Cell Death Dis. 2021;12:546.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Dong W, Li L, Teng X, Yang X, Si S, Chai J. End processing factor APLF promotes NHEJ efficiency and contributes to TMZ- and ionizing radiation-resistance in glioblastoma cells. OncoTargets Ther. 2020;13:10593–605.

    Article  CAS  Google Scholar 

  191. Zhang T, Chai J, Chi L. Induction of XLF and 53BP1 expression is associated with temozolomide resistance in glioblastoma cells. OncoTargets Ther. 2019;12:10139–51.

    Article  CAS  Google Scholar 

  192. Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PM, et al. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol: J Am Soc Clin Oncol. 2008;26:4659–65.

    Article  CAS  Google Scholar 

  193. Raizer JJ, Giglio P, Hu J, Groves M, Merrell R, Conrad C, et al. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J Neuro-Oncol. 2016;126:185–92.

    Article  CAS  Google Scholar 

  194. Lee EQ, Reardon DA, Schiff D, Drappatz J, Muzikansky A, Grimm SA, et al. Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma. Neuro-Oncol. 2015;17:862–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yu W, Zhang L, Wei Q, Shao A. O(6)-Methylguanine-DNA Methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy. Front Oncol. 2019;9:1547.

    Article  PubMed  Google Scholar 

  196. Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem. 2018;293:10512–23.

    Article  CAS  PubMed  Google Scholar 

  197. Yamamoto H, Hirasawa A. Homologous recombination deficiencies and hereditary tumors. Int J Mol Sci. 2021;23:348.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82203035) to Jianxiong Ji, National Natural Science Foundation of China (82403931) to Kaikai Ding, National Key Research and Development Program of China (2023YFC2510004) to Gao Chen.

Author information

Authors and Affiliations

Authors

Contributions

YKC, KKD, and SYZ wrote and edited the manuscript. STG, and XXH produced the figures and illustrations. HJW, FQZ, YJW, JFX, CW, CHL, JX, LW, QW, GC and GG gave intellectual input, JMZ, CGY, and JXJ conceived and organized the manuscript.

Corresponding authors

Correspondence to Jianmin Zhang, Chenggang Yi or Jianxiong Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors read this manuscript and approve for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ding, K., Zheng, S. et al. Post-translational modifications in DNA damage repair: mechanisms underlying temozolomide resistance in glioblastoma. Oncogene 44, 1781–1792 (2025). https://doi.org/10.1038/s41388-025-03454-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03454-5

This article is cited by

Search

Quick links