Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PTEN neddylation aggravates CDK4/6 inhibitor resistance in breast cancer

Subjects

Abstract

The gradual emergence of a novel therapeutic approach lies in the restoration of tumor suppressive machinery. PTEN is a crucial negative regulator of the PI3K/Akt signaling pathway. Protein neddylation modification contributes to PTEN inactivation and fuels breast cancer progression. Here, we highlight that an elevated level of PTEN neddylation is markedly associated with resistance to palbociclib, a CDK4/6 inhibitor used in luminal subtype breast cancer patients. Mechanistically, PTEN neddylation activates the PI3K/Akt signaling pathway, and more notably, upregulates the activity of the AP-1 transcription factor. Our data showed that PTEN neddylation stabilizes JUND, a transcription factor involved in the AP-1 complex, by disrupting its interaction with the E3 ubiquitin ligase ITCH. Consequently, activated JUND leads to the release of cytokines and chemokines, which in turn may drive an inflammatory tumor microenvironment, potentially contributing to drug resistance. Then, we identified Echinacoside as a potent inhibitor of PTEN neddylation both in vivo and in vitro by disrupting its interaction with XIAP, the E3 ligase responsible for PTEN neddylation. Combination of Echinacoside effectively overcome resistance to palbociclib in breast cancer treatment. These findings highlight targeting PTEN neddylation as a promising strategy for restoring tumor suppressor activity and overcoming resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Palbociclib-resistant breast cancer cells express higher levels of PTEN neddylation modification.
Fig. 2: Upregulation of XIAP increases the PTEN neddylation in palbociclib-resistant breast cancer.
Fig. 3: PTEN neddylation enhances JUND protein stability.
Fig. 4: PTEN neddylation hinders the ITCH-mediated ubiquitination degradation of JUND.
Fig. 5: Echinacoside is identified as an inhibitor of PTEN neddylation.
Fig. 6: ECH is dependent on PTEN neddylation to suppress tumorigenesis.
Fig. 7: Combination ECH enhances the sensitivity of palbociclib in breast cancer.

Similar content being viewed by others

Data availability

RNA-seq data have been deposited at SRA (PRJNA1143082 and PRJNA1144658) and are publicly available as of the date of publication. All data are available in the main text or the supplementary materials.

References

  1. Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell. 2023;186:1708–28.

    Article  PubMed  CAS  Google Scholar 

  2. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389:1134–50.

    Article  PubMed  Google Scholar 

  3. Giuliano M, Schettini F, Rognoni C, Milani M, Jerusalem G, Bachelot T, et al. Endocrine treatment versus chemotherapy in postmenopausal women with hormone receptor-positive, HER2-negative, metastatic breast cancer: a systematic review and network meta-analysis. Lancet Oncol. 2019;20:1360–9.

    Article  PubMed  CAS  Google Scholar 

  4. Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer. 2022;22:356–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution - a game-changing era for breast cancer treatment. Nat Rev Clin Oncol. 2024;21:89–105.

    Article  PubMed  CAS  Google Scholar 

  6. O’Sullivan CC, Clarke R, Goetz MP, Robertson J. Cyclin-dependent kinase 4/6 inhibitors for treatment of hormone receptor-positive, ERBB2-negative breast cancer: a review. JAMA Oncol. 2023;9:1273–82.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Portman N, Alexandrou S, Carson E, Wang S, Lim E, Caldon CE. Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer. Endocr Relat Cancer. 2019;26:R15–R30.

    Article  PubMed  CAS  Google Scholar 

  8. Lloyd MR, Spring LM, Bardia A, Wander SA. Mechanisms of resistance to CDK4/6 blockade in advanced hormone receptor-positive, HER2-negative breast cancer and emerging therapeutic opportunities. Clin Cancer Res. 2022;28:821–30.

    Article  PubMed  CAS  Google Scholar 

  9. Cai Z, Wang J, Li Y, Shi Q, Jin L, Li S, et al. Overexpressed cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors. Sci China Life Sci. 2023;66:94–109.

    Article  PubMed  CAS  Google Scholar 

  10. Palafox M, Monserrat L, Bellet M, Villacampa G, Gonzalez-Perez A, Oliveira M, et al. High p16 expression and heterozygous RB1 loss are biomarkers for CDK4/6 inhibitor resistance in ER(+) breast cancer. Nat Commun. 2022;13:5258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kudo R, Safonov A, Jones C, Moiso E, Dry JR, Shao H, et al. Long-term breast cancer response to CDK4/6 inhibition defined by TP53-mediated geroconversion. Cancer Cell. 2024;42:1919–35.

    Article  PubMed  CAS  Google Scholar 

  12. Zhou Y, Jin X, Ma J, Ding D, Huang Z, Sheng H, et al. HDAC5 loss impairs RB repression of pro-oncogenic genes and confers CDK4/6 inhibitor resistance in cancer. Cancer Res. 2021;81:1486–99.

    Article  PubMed  CAS  Google Scholar 

  13. Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 2016;76:2301–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wander SA, Cohen O, Gong X, Johnson GN, Buendia-Buendia JE, Lloyd MR, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov. 2020;10:1174–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Clark AS, Makhlin I, DeMichele A. Setting the pick: can PI3K inhibitors circumvent CDK4/6 inhibitor resistance?. Clin Cancer Res. 2021;27:371–3.

    Article  PubMed  CAS  Google Scholar 

  16. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell. 2000;100:387–90.

    Article  PubMed  Google Scholar 

  17. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.

    Article  PubMed  CAS  Google Scholar 

  18. Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol. 2018;19:547–62.

    Article  PubMed  CAS  Google Scholar 

  19. Papa A, Pandolfi PP. The PTEN-PI3K axis in cancer. Biomolecules. 2019;9:153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Costa C, Wang Y, Ly A, Hosono Y, Murchie E, Walmsley CS, et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov. 2020;10:72–85.

    Article  PubMed  CAS  Google Scholar 

  21. Dosil MA, Mirantes C, Eritja N, Felip I, Navaridas R, Gatius S, et al. Palbociclib has antitumour effects on Pten-deficient endometrial neoplasias. J Pathol. 2017;242:152–64.

    Article  PubMed  CAS  Google Scholar 

  22. Lee JS, Yost SE, Li SM, Cui Y, Frankel PH, Yuan YC, et al. Genomic markers of CDK4/6 inhibitor resistance in hormone receptor positive metastatic breast cancer. Cancers. 2022;14:3159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lee YR, Chen M, Lee JD, Zhang J, Lin SY, Fu TM, et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science. 2019;364:eaau0159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lin YX, Wang Y, Ding J, Jiang A, Wang J, Yu M, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci Transl Med. 2021;13:eaba9772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kamitani T, Kito K, Nguyen HP, Yeh ET. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem. 1997;272:28557–62.

    Article  PubMed  CAS  Google Scholar 

  26. Enchev RI, Schulman BA, Peter M. Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol. 2015;16:30–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Sig Transduct Target Ther. 2024;9:85.

    Article  CAS  Google Scholar 

  28. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458:732–6.

    Article  PubMed  CAS  Google Scholar 

  29. Fu DJ, Wang T. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. J Hematol Oncol. 2023;16:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Xie P, Peng ZQ, Chen YJ, Li HC, Du MG, Tan YW, et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 2021;31:291–311.

    Article  PubMed  CAS  Google Scholar 

  31. Du MG, Peng ZQ, Gai WB, Liu F, Liu W, Chen YJ, et al. The absence of PTEN in breast cancer is a driver of MLN4924 resistance. Front Cell Dev Biol. 2021;9:667435.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chakrabarti R, Wei Y, Hang J, Hang X, Andres Blanco M, Choudhury A, et al. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling. Nat Cell Biol. 2014;16:1–13.

    Article  Google Scholar 

  33. Wan L, Lu X, Yuan S, Wei Y, Guo F, Shen M, et al. MTDH-SND1 interaction is crucial for expansion and activity of tumor-initiating cells in diverse oncogene- and carcinogen-induced mammary tumors. Cancer Cell. 2014;26:92–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature. 2017;543:428–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Knudsen ES, Knudsen KE. Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer. 2008;8:714–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Guiley KZ, Stevenson JW, Lou K, Barkovich KJ, Kumarasamy V, Wijeratne TU, et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science. 2019;366:6471.

    Article  Google Scholar 

  37. Dong F, Guo W, Zhang L, Wu S, Teraishi F, Davis JJ, et al. Downregulation of XIAP and induction of apoptosis by the synthetic cyclin-dependent kinase inhibitor GW8510 in non-small cell lung cancer cells. Cancer Biol Ther. 2006;5:165–70.

    Article  PubMed  CAS  Google Scholar 

  38. Chen Q, Chen K, Guo G, Li F, Chen C, Wang S, et al. A critical role of CDKN3 in Bcr-Abl-mediated tumorigenesis. PloS One. 2014;9:e111611.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003;3:859–68.

    Article  PubMed  CAS  Google Scholar 

  40. Liu F, Wagner S, Campbell RB, Nickerson JA, Schiffer CA, Ross AH. PTEN enters the nucleus by diffusion. J Cell Biochem. 2005;96:221–34.

    Article  PubMed  CAS  Google Scholar 

  41. Planchon SM, Waite KA, Eng C. The nuclear affairs of PTEN. J Cell Sci. 2008;121:249–53.

    Article  PubMed  CAS  Google Scholar 

  42. Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, et al. An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun. 2017;8:347.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Li Y, He M, Kong X, Jiang P, Liu X, et al. UbiBrowser 2.0: a comprehensive resource for proteome-wide known and predicted ubiquitin ligase/deubiquitinase-substrate interactions in eukaryotic species. Nucleic Acids Res. 2022;50:D719–D728.

    Article  PubMed  CAS  Google Scholar 

  44. Paul J, Singh AK, Kathania M, Elviche TL, Zeng M, Basrur V, et al. IL-17-driven intestinal fibrosis is inhibited by Itch-mediated ubiquitination of HIC-5. Mucosal Immunol. 2018;11:427–36.

    Article  PubMed  CAS  Google Scholar 

  45. Angel P, Hattori K, Smeal T, Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988;55:875–85.

    Article  PubMed  CAS  Google Scholar 

  46. Van Themsche C, Leblanc V, Parent S, Asselin E. X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J Biol Chem. 2009;284:20462–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Facino RM, Carini M, Aldini G, Saibene L, Pietta P, Mauri P. Echinacoside and caffeoyl conjugates protect collagen from free radical-induced degradation: a potential use of Echinacea extracts in the prevention of skin photodamage. Planta Med. 1995;61:510–4.

    Article  PubMed  CAS  Google Scholar 

  48. Wang W, Jiang S, Zhao Y, Zhu G. Echinacoside: a promising active natural products and pharmacological agents. Pharmacol Res. 2023;197:106951.

    Article  PubMed  CAS  Google Scholar 

  49. Chen BD, Clark CR, Chou TH. Granulocyte/macrophage colony-stimulating factor stimulates monocyte and tissue macrophage proliferation and enhances their responsiveness to macrophage colony-stimulating factor. Blood. 1988;71:997–1002.

    Article  PubMed  CAS  Google Scholar 

  50. Spiekermann K, Roesler J, Emmendoerffer A, Elsner J, Welte K. Functional features of neutrophils induced by G-CSF and GM-CSF treatment: differential effects and clinical implications. Leukemia. 1997;11:466–78.

    Article  PubMed  CAS  Google Scholar 

  51. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13:159–75.

    Article  PubMed  CAS  Google Scholar 

  52. Burgoyne AM, Vann KR, Joshi S, Morales GA, Vega FM, Singh A, et al. A triple action CDK4/6-PI3K-BET inhibitor with augmented cancer cell cytotoxicity. Cell Discov. 2020;6:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Agostinetto E, Debien V, Marta GN, Lambertini M, Piccart-Gebhart M, de Azambuja E. CDK4/6 and PI3K inhibitors: a new promise for patients with HER2-positive breast cancer. Eur J Clin Invest. 2021;51:e13535.

    Article  PubMed  Google Scholar 

  54. Lee CL, Cremona M, Farrelly A, Workman JA, Kennedy S, Aslam R, et al. Preclinical evaluation of the CDK4/6 inhibitor Palbociclib in combination with a PI3K or MEK inhibitor in colorectal cancer. Cancer Biol Ther. 2023;24:2223388.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4:E131–E136.

    Article  PubMed  CAS  Google Scholar 

  56. Ruiz EJ, Lan L, Diefenbacher ME, Riising EM, Da Costa C, Chakraborty A, et al. JunD, not c-Jun, is the AP-1 transcription factor required for Ras-induced lung cancer. JCI Insight. 2021;6:e124985.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Watt AC, Cejas P, DeCristo MJ, Metzger-Filho O, Lam EYN, Qiu X, et al. CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity. Nat Cancer. 2021;2:34–48.

    Article  PubMed  CAS  Google Scholar 

  58. Yamamoto N, Shimizu T, Yonemori K, Kitano S, Kondo S, Iwasa S, et al. A first-in-human, phase 1 study of the NEDD8 activating enzyme E1 inhibitor TAS4464 in patients with advanced solid tumors. Invest N Drugs. 2021;39:1036–46.

    Article  CAS  Google Scholar 

  59. Zhou H, Lu J, Liu L, Bernard D, Yang CY, Fernandez-Salas E, et al. A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. Nat Commun. 2017;8:1150.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhou H, Zhou W, Zhou B, Liu L, Chern TR, Chinnaswamy K, et al. High-affinity peptidomimetic inhibitors of the DCN1-UBC12 protein-protein interaction. J Med Chem. 2018;61:1934–50.

    Article  PubMed  CAS  Google Scholar 

  61. Zheng YC, Guo YJ, Wang B, Wang C, Mamun MAA, Gao Y, et al. Targeting neddylation E2s: a novel therapeutic strategy in cancer. J Hematol Oncol. 2021;14:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Xu T, Ma Q, Li Y, Yu Q, Pan P, Zheng Y, et al. A small molecule inhibitor of the UBE2F-CRL5 axis induces apoptosis and radiosensitization in lung cancer. Sig Transduct Target Ther. 2022;7:354.

    Article  CAS  Google Scholar 

  63. Liu J, Tang N, Liu N, Lei P, Wang F. Echinacoside inhibits the proliferation, migration, invasion and angiogenesis of ovarian cancer cells through PI3K/AKT pathway. J Mol Histol. 2022;53:493–502.

    Article  PubMed  Google Scholar 

  64. Liang H, Yin G, Shi G, Liu Z, Liu X, Li J. Echinacoside regulates PI3K/AKT/HIF-1α/VEGF cross signaling axis in proliferation and apoptosis of breast cancer. Anal Biochem. 2024;684:115360.

    Article  PubMed  CAS  Google Scholar 

  65. Wei J, Zheng Z, Hou X, Jia F, Yuan Y, Yuan F, et al. Echinacoside inhibits colorectal cancer metastasis via modulating the gut microbiota and suppressing the PI3K/AKT signaling pathway. J Ethnopharmacol. 2024;318:116866.

    Article  PubMed  CAS  Google Scholar 

  66. Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood. 2019;133:2159–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Teh JLF, Aplin AE. Arrested developments: CDK4/6 inhibitor resistance and alterations in the tumor immune microenvironment. Clin Cancer Res. 2019;25:921–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Core Facility Center, Capital Medical University for providing platform support for this research.

Funding

This work was supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (No. 82122052), National Natural Science Foundation of China (NSFC) (No. 32471305), Outstanding Young Talents Program in Chinese Institutes for Medical Research (No. CX23YQA03), Innovative Group Cultivation Project for Basic Medicine (No. CX25XT03).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PX; Methodology: FL, WXL, YXS, SHL, XKJ; Formal Analysis: FL; Investigation: PX, FL; Resources: SYS, YWT, ZZ; Writing-Original Draft: PX; Funding Acquisition: PX.

Corresponding author

Correspondence to Ping Xie.

Ethics declarations

Competing interests

The authors declare that there are no competing financial, commercial, or professional interest that could influence the performance, interpretation, or reporting of the research presented in this manuscript. All authors have read and approved this declaration of interests, confirming that it accurately reflects their current situation.

Ethics approval

All animals were handled in strict accordance to the “Guide for the Care and Use of Laboratory Animals” and the “Principles for the Utilization and Care of Vertebrate Animals”, and all animal work was approved by Capital Medical University Ethics Committee. The clinical samples were approved by the department of breast and thyroid surgery at the Second People’s Hospital of Shenzhen and Hunan Cancer Hospital. Informed consent was obtained from all subjects or their relatives. All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, W., Tan, Y. et al. PTEN neddylation aggravates CDK4/6 inhibitor resistance in breast cancer. Oncogene 44, 2997–3013 (2025). https://doi.org/10.1038/s41388-025-03468-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03468-z

This article is cited by

Search

Quick links