Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane flexibility induced by BST2 contributes to radioresistance in glioblastoma

Abstract

Glioblastoma (GBM) is an aggressive brain tumor with a poor prognosis due to its resistance to radiotherapy. Epidermal growth factor receptor variant III (EGFRvIII), a common mutation in GBM, promotes radioresistance through ligand-independent activation. We hypothesized that membrane flexibility influences EGFRvIII activation and enhances resistance. Bone marrow stromal antigen 2 (BST2, CD317, or TETHERIN) was identified as a key mediator linking membrane dynamics to EGFRvIII-driven survival signaling. Radiation-induced changes in membrane flexibility amplified BST2 activity, stabilizing lipid rafts and promoting EGFRvIII clustering. Pharmacological inhibition of BST2 with arbutin, an FDA-approved compound, disrupted this mechanism, increasing GBM radiosensitivity by enhancing mitochondrial reactive oxygen species (ROS) production and apoptosis. Additionally, BST2 downregulation impaired de novo lipogenesis and reduced lipid droplet accumulation, highlighting its role in metabolic reprogramming. In orthotopic xenograft models, BST2 inhibition suppressed tumor growth and prolonged survival. These findings establish BST2 as a key regulator of membrane-driven radioresistance in GBM. Targeting BST2-mediated membrane remodeling may provide a novel therapeutic strategy to enhance radiotherapy efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BST2 is upregulated in radioresistant GBM cells and radiation increases BST2 expression.
Fig. 2: BST2 downregulation suppresses radioresistance in GBM cells.
Fig. 3: Membrane flexibility by BST2 contributed to the activation of EGFRvIII.
Fig. 4: BST2 downregulation sensitizes to IR by increasing mitochondrial ROS.
Fig. 5: Pharmacological regulation of BST2 sensitizes GBM cells to IR.
Fig. 6: Arbutin attenuates tumor growth in GBM xenograft mouse models.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22:1073–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rodríguez-Camacho A, Flores-Vázquez JG, Moscardini-Martelli J, Torres-Ríos JA, Olmos-Guzmán A, Ortiz-Arce CS, et al. Glioblastoma treatment: state-of-the-art and future perspectives. Int. J. Mol. Sci. 2022;23:7207.

  3. Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L, et al. Radiotherapy modulates tumor cell fate decisions: a review. Radiat Oncol. 2022;17:196.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 2008;26:3015–24.

    Article  CAS  PubMed  Google Scholar 

  5. Xing JL, Stea B. Molecular mechanisms of sensitivity and resistance to radiotherapy. Clin Exp Metastasis. 2024;41:517–24.

    Article  CAS  PubMed  Google Scholar 

  6. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–39.

    Article  CAS  PubMed  Google Scholar 

  7. Jacobson K, Mouritsen OG, Anderson RG. Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol. 2007;9:7–14.

    Article  CAS  PubMed  Google Scholar 

  8. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50.

    Article  CAS  PubMed  Google Scholar 

  9. Araya MK, Zhou Y, Gorfe AA. Remodeling of the plasma membrane by surface-bound protein monomers and oligomers: the critical role of intrinsically disordered regions. J Membr Biol. 2022;255:651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roy A, Patra SK. Lipid raft facilitated receptor organization and signaling: a functional rheostat in embryonic development, stem cell biology and cancer. Stem Cell Rev Rep. 2023;19:2–25.

    Article  CAS  PubMed  Google Scholar 

  11. Felsberg J, Hentschel B, Kaulich K, Gramatzki D, Zacher A, Malzkorn B, et al. Epidermal Growth Factor Receptor Variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res. 2017;23:6846–55.

    Article  CAS  PubMed  Google Scholar 

  12. Gan HK, Kaye AH, Luwor RB. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009;16:748–54.

    Article  CAS  PubMed  Google Scholar 

  13. Heimberger AB, Sampson JH. The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients. Expert Opin Biol Ther. 2009;9:1087–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bi J, Ichu TA, Zanca C, Yang H, Zhang W, Gu Y, et al. Oncogene amplification in growth factor signaling pathways renders cancers dependent on membrane lipid remodeling. Cell Metab. 2019;30:525–538.e528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, et al. Architecture and membrane interactions of the EGF receptor. Cell. 2013;152:557–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kegelman TP, Wu B, Das SK, Talukdar S, Beckta JM, Hu B, et al. Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin. Proc Natl Acad Sci USA. 2017;114:370–5.

    Article  CAS  PubMed  Google Scholar 

  17. Renne MF, Ernst R. Membrane homeostasis beyond fluidity: control of membrane compressibility. Trends Biochem Sci. 2023;48:963–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang H, Lee H, Kim K, Shin E, Kim B, Kang J, et al. DGKB mediates radioresistance by regulating DGAT1-dependent lipotoxicity in glioblastoma. Cell Rep Med. 2023;4:100880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shin E, Kim B, Kang H, Lee H, Park J, Kang J, et al. Mitochondrial glutamate transporter SLC25A22 uni-directionally export glutamate for metabolic rewiring in radioresistant glioblastoma. Int J Biol Macromol. 2023;253:127511.

    Article  CAS  PubMed  Google Scholar 

  20. Yu H, Bian Q, Wang X, Wang X, Lai L, Wu Z, et al. Bone marrow stromal cell antigen 2: Tumor biology, signaling pathway and therapeutic targeting (Review). Oncol Rep. 2024;51:45.

  21. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J. 1997;72:2413–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sorkin A, McClure M, Huang F, Carter R. Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr Biol. 2000;10:1395–8.

    Article  CAS  PubMed  Google Scholar 

  23. Peetla C, Vijayaraghavalu S, Labhasetwar V. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Adv Drug Deliv Rev. 2013;65:1686–98.

    Article  CAS  PubMed  Google Scholar 

  24. Mahammad S, Parmryd I. Cholesterol depletion using methyl-β-cyclodextrin. Methods Mol Biol. 2015;1232:91–102.

    Article  CAS  PubMed  Google Scholar 

  25. Khodarev NN, Beckett M, Labay E, Darga T, Roizman B, Weichselbaum RR. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc Natl Acad Sci USA. 2004;101:1714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mahauad-Fernandez WD, Naushad W, Panzner TD, Bashir A, Lal G, Okeoma CM. BST-2 promotes survival in circulation and pulmonary metastatic seeding of breast cancer cells. Sci Rep. 2018;8:17608.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lammering G, Valerie K, Lin PS, Hewit TH, Schmidt-Ullrich RK. Radiation-induced activation of a common variant of EGFR confers enhanced radioresistance. Radiother Oncol. 2004;72:267–73.

    Article  CAS  PubMed  Google Scholar 

  28. Grandal MV, Zandi R, Pedersen MW, Willumsen BM, van Deurs B, Poulsen HS. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis. 2007;28:1408–17.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang G, Li X, Chen Q, Li J, Ruan Q, Chen YH, et al. CD317 activates EGFR by regulating its association with lipid rafts. Cancer Res. 2019;79:2220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruzzi F, Cappello C, Semprini MS, Scalambra L, Angelicola S, Pittino OM, et al. Lipid rafts, caveolae, and epidermal growth factor receptor family: friends or foes?. Cell Commun Signal. 2024;22:489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abulrob A, Giuseppin S, Andrade MF, McDermid A, Moreno M, Stanimirovic D. Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene. 2004;23:6967–79.

    Article  CAS  PubMed  Google Scholar 

  32. Cemeus C, Zhao TT, Barrett GM, Lorimer IA, Dimitroulakos J. Lovastatin enhances gefitinib activity in glioblastoma cells irrespective of EGFRvIII and PTEN status. J Neurooncol. 2008;90:9–17.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng SL, Liu RH, Sheu JN, Chen ST, Sinchaikul S, Tsay GJ. Toxicogenomics of A375 human malignant melanoma cells treated with arbutin. J Biomed Sci. 2007;14:87–105.

    Article  CAS  PubMed  Google Scholar 

  34. Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 2014;21:260–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 2013;280:5350–70.

    Article  CAS  PubMed  Google Scholar 

  36. Frederick L, Wang XY, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 2000;60:1383–137.

    CAS  PubMed  Google Scholar 

  37. Swiecki M, Wang Y, Gilfillan S, Colonna M. Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog. 2013;9:e1003728.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451:425–30.

    Article  CAS  PubMed  Google Scholar 

  39. Presle A, Frémont S, Salles A, Commere PH, Sassoon N, Berlioz-Torrent C, et al. The viral restriction factor tetherin/BST2 tethers cytokinetic midbody remnants to the cell surface. Curr Biol. 2021;31:2203–2213.e2205.

    Article  CAS  PubMed  Google Scholar 

  40. Bensaad K, Favaro E, Lewis CA, Peck B, Lord S, Collins JM, et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 2014;9:349–65.

    Article  CAS  PubMed  Google Scholar 

  41. Abbott SK, Else PL, Atkins TA, Hulbert AJ. Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochim Biophys Acta. 2012;1818:1309–17.

    Article  CAS  PubMed  Google Scholar 

  42. Fan YY, Fuentes NR, Hou TY, Barhoumi R, Li XC, Deutz NEP, et al. Remodelling of primary human CD4+ T cell plasma membrane order by n-3 PUFA. Br J Nutr. 2018;119:163–75.

    Article  CAS  PubMed  Google Scholar 

  43. Dentin R, Benhamed F, Pégorier JP, Foufelle F, Viollet B, Vaulont S, et al. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J Clin Invest. 2005;115:2843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu L, Wang S, Ding L, Liang X, Wang M, Dong L, et al. Lower ω-6/ω-3 polyunsaturated fatty acid ratios decrease fat deposition by inhibiting fat synthesis in gosling. Asian-Australas J Anim Sci. 2016;29:1443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (NRF-2022R1A2C1009681, HSY; RS-2023-00207904, BHY). This research was also supported by Global-Learning & Academic research institution for Master’s·PhD students, and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00301938).

Author information

Authors and Affiliations

Authors

Contributions

Haksoo Lee: Formal analysis, Investigation, Writing – original draft. Dahye Kim: Validation, Investigation. Byeongsoo Kim: Validation, Investigation. Eunguk Shin: Validation. Hyunkoo Kang: Validation. Jae-Myung Lee: Resources. HyeSook Youn: Conceptualization, Investigation, Funding acquisition. BuHyun Youn: Conceptualization, Supervision, Funding acquisition, Writing - review & editing.

Corresponding author

Correspondence to BuHyun Youn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Animal Care and Use Committee of Pusan National University (Approval Number: PNU-2022-0060) and adhered to the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Human GBM stem cell lines (BCL20-HP02 and BCL21-HP03) were obtained from surgical specimens under a protocol approved by the Institutional Review Board of Haeundae Paik Hospital, Inje University (Approval Number: HPIRB:2017-06-007). Written informed consent was obtained from all patients prior to tissue collection.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, D., Kim, B. et al. Membrane flexibility induced by BST2 contributes to radioresistance in glioblastoma. Oncogene 44, 3816–3830 (2025). https://doi.org/10.1038/s41388-025-03544-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03544-4

Search

Quick links