Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytokine CCL2 secreted by cancer-associated fibroblasts augments temozolomide resistance in glioblastoma through ERK1/2 signaling

Abstract

The intricate tumor microenvironment largely influences chemoresistance in glioblastoma. Cancer-associated fibroblasts (CAFs) that modulate tumor progression have recently been identified as non-tumor stromal cells within the glioblastoma microenvironment. It remains unclear whether CAFs play a role in conferring chemoresistance to glioblastoma. The effects and mechanisms of CAFs on glioblastoma cells under temozolomide (TMZ) treatment are investigated by a series of patient-derived CAFs, orthotopic xenograft mouse models, and glioblastoma organoids (GBOs). Patient-derived cells have a transcriptomic and biomolecular profile of CAFs. CAFs promote temozolomide resistance in glioblastoma in vitro; these findings are consistent with results from intracranial tumor xenografts and GBO models. Mechanistically, CAFs express and secrete a significantly higher C-C motif chemokine ligand 2 (CCL2), which selectively enhances the activation of the ERK1/2 signaling in glioblastoma cells. Pharmacologically disrupting the CCL2-CCR2 axis or MEK1/2-ERK1/2 pathway effectively restores the therapeutic efficacy of temozolomide in glioblastoma cells and patient-derived GBOs. The decreased phosphor-ERK1/2 expression induced by trametinib treatment is also observed in glioblastoma cells following the CCL2-CCR2 axis inhibition. The present study suggests that targeting the CCL2/CCR2/ERK1/2 pathway may help overcome chemoresistance in glioblastomas caused by CAFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CAFs are associated with worse survival and poor TMZ response for gliomas.
Fig. 2: Primary culture and identification of patient-derived CAFs.
Fig. 3: CAF promotes the TMZ resistance of GBM cells.
Fig. 4: CAF promotes TMZ resistance of GBM cells via cytokine CCL2.
Fig. 5: CCL2-CCR2 signaling activates the ERK1/2 expression in GBM cells to potentiate TMZ resistance.
Fig. 6: Pharmacological inhibition of CCR2 or ERK1/2 enhances TMZ efficacy in patient-derived GBO models.
Fig. 7: Mechanistic model of CAF-mediated chemoresistance in glioblastoma.

Similar content being viewed by others

Data availability

Raw sequencing data is available at Genome Sequence Archive for Humans (https://ngdc.cncb.ac.cn/gsa-human/s/OnfgtAhQ) with accession HRA002403 and could be accessed under regulation of the GSA-Human Data Access Agreement. The code used for analyses is available at https://github.com/sxz-ivan/GAF-analysis. Figureshare https://doi.org/10.6084/m9.figshare.28603253. All data are available in the main text or the supplementary materials.

References

  1. Ostrom QT, Price M, Ryan K, Edelson J, Neff C, Cioffi G, et al. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol. 2022;24:iii1–iii38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA: ACancer J Clin. 2020;70:299–312.

    Google Scholar 

  4. Jung E, Osswald M, Ratliff M, Dogan H, Xie R, Weil S, et al. Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat Commun. 2021;12:1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021;18:792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    Article  CAS  PubMed  Google Scholar 

  7. Dorrier CE, Aran D, Haenelt EA, Sheehy RN, Hoi KK, Pintaric L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Z, Zhuo S, He G, Tang J, Hao W, Gao WQ, et al. Prognosis and Immunotherapy Significances of a Cancer-Associated Fibroblasts-Related Gene Signature in Gliomas. Front Cell Dev Biol. 2021;9:721897

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jain S, Rick JW, Joshi RS, Beniwal A, Spatz J, Gill S, et al. Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects. J Clin Investig. 2023;133:e147087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galbo PM Jr, Madsen AT, Liu Y, Peng M, Wei Y, Ciesielski MJ, et al. Functional Contribution and Clinical Implication of Cancer-Associated Fibroblasts in Glioblastoma. Clin Cancer Res. 2024;30:865–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kenny HA, Krausz T, Yamada SD, Lengyel E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J cancer. 2007;121:1463–72.

    Article  CAS  PubMed  Google Scholar 

  12. Jacob F, Ming G-l, Song H. Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nat Protoc. 2020;15:4000–33.

    Article  CAS  PubMed  Google Scholar 

  13. Wu M, Wang T, Ji N, Lu T, Yuan R, Wu L, et al. Multi-omics and pharmacological characterization of patient-derived glioma cell lines. Nat Commun. 2024;15:6740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abdelfattah N, Kumar P, Wang C, Leu J-S, Flynn WF, Gao R, et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat Commun. 2022;13:767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: a J Integr Biol. 2012;16:284–7.

    Article  CAS  Google Scholar 

  16. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic acids Res. 2016;44:e71. e.

    Article  PubMed  Google Scholar 

  17. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. 2017;6:e26476

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thorlacius-Ussing J, Jensen C, Nissen NI, Cox TR, Kalluri R, Karsdal M, et al. The collagen landscape in cancer: profiling collagens in tumors and in circulation reveals novel markers of cancer-associated fibroblast subtypes. J Pathol. 2024;262:22–36.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu S, Chen M, Ying Y, Wu Q, Huang Z, Ni W, et al. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res. 2022;10:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016;30:1002–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hutton C, Heider F, Blanco-Gomez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;39:1227–44.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer Cell. 2017;31:326–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kato M, Placencio-Hickok VR, Madhav A, Haldar S, Tripathi M, Billet S, et al. Heterogeneous cancer-associated fibroblast population potentiates neuroendocrine differentiation and castrate resistance in a CD105-dependent manner. Oncogene. 2019;38:716–30.

    Article  CAS  PubMed  Google Scholar 

  24. Bu L, Baba H, Yoshida N, Miyake K, Yasuda T, Uchihara T, et al. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene. 2019;38:4887–901.

    Article  CAS  PubMed  Google Scholar 

  25. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:1–14.

    Article  Google Scholar 

  26. Luo N, Zhu W, Li X, Fu M, Zhang Y, Yang F, et al. Defective autophagy of pericytes enhances radiation-induced senescence promoting radiation brain injury. Neuro-Oncol. 2024;26:2288–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vymola P, Garcia-Borja E, Cervenka J, Balaziova E, Vymolova B, Veprkova J, et al. Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination. Brain Pathol. 2024;34:e13265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez-Morga M, Garrigos D, Rodriguez-Montero E, Pombero A, Garcia-Lopez R, Martinez S. Pericytes are immunoregulatory cells in glioma genesis and progression. Int J Mol Sci. 2024;25:5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ngo MT, Sarkaria JN, Harley BAC. Perivascular stromal cells instruct glioblastoma invasion, proliferation, and therapeutic response within an engineered brain perivascular niche model. Adv Sci. 2022;9:2201888.

    Article  CAS  Google Scholar 

  30. Zhang XN, Yang KD, Chen C, He ZC, Wang QH, Feng H, et al. Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling. Cell Res. 2021;31:16.

    Article  Google Scholar 

  31. Shi Z, Tu J, Ying Y, Diao Y, Zhang P, Liao S, et al. CC chemokine ligand-2: a promising target for overcoming anticancer drug resistance. Cancers. 2022;14:4251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng H, Liu K, Shen X, Liang J, Wang C, Qiu W, et al. Targeting tumor cell-derived CCL2 as a strategy to overcome Bevacizumab resistance in ETV5+ colorectal cancer. Cell Death Dis. 2020;11:916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dansereau M-A, Midavaine É, Bégin-Lavallée V, Belkouch M, Beaudet N, Longpré J-M, et al. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity. J Neuroinflamm. 2021;18:1–18.

    Article  Google Scholar 

  34. Qian Y, Ding P, Xu J, Nie X, Lu B. CCL2 activates AKT signaling to promote glycolysis and chemoresistance in glioma cells. Cell Biol Int. 2022;46:819–28.

    Article  CAS  PubMed  Google Scholar 

  35. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Long GV, Hauschild A, Santinami M, Atkinson V, Mandalà M, Chiarion-Sileni V, et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med. 2017;377:1813–23.

    Article  CAS  PubMed  Google Scholar 

  38. Varga A, Soria J-C, Hollebecque A, LoRusso P, Bendell J, Huang S-MA, et al. A First-in-Human Phase I Study to Evaluate the ERK1/2 Inhibitor GDC-0994 in Patients with Advanced Solid TumorsERK1/2 Inhibition in Advanced Solid Tumors. Clin Cancer Res. 2020;26:1229–36.

    Article  CAS  PubMed  Google Scholar 

  39. Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science. 2019;364:952–5.

    Article  CAS  PubMed  Google Scholar 

  40. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841–56.e16.

    Article  CAS  PubMed  Google Scholar 

  41. Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, et al. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell. 2021;39:1531–47.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer cell. 2018;33:463–79.e10.

    Article  CAS  PubMed  Google Scholar 

  43. Clavreul A, Etcheverry A, Chassevent A, Quillien V, Avril T, Jourdan ML, et al. Isolation of a new cell population in the glioblastoma microenvironment. J Neuro-Oncol. 2012;106:493–504.

    Article  Google Scholar 

  44. Rochette A, Boufaied N, Scarlata E, Hamel L, Brimo F, Whitaker HC, et al. Asporin is a stromally expressed marker associated with prostate cancer progression. Br J cancer. 2017;116:775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sahai E, Astsaturov I, Cukierman E, Denardo DG, Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:1–13.

    Article  Google Scholar 

  46. Tripathi S, Najem H, Dussold C, Pacheco S, Miska J, McCortney K, et al. Cancer-associated fibroblast–secreted collagen is associated with immune inhibitor receptor LAIR1 in gliomas. J Clin Investig. 2024;134:e176613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balana C, Vaz MA, Manuel Sepúlveda J, Mesia C, Del Barco S, Pineda E, et al. A phase II randomized, multicenter, open-label trial of continuing adjuvant temozolomide beyond 6 cycles in patients with glioblastoma (GEINO 14-01). Neuro-Oncol. 2020;22:1851–61.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao Y, He J, Li Y, Lv S, Cui H. NUSAP1 potentiates chemoresistance in glioblastoma through its SAP domain to stabilize ATR. Signal Transduct Target Ther. 2020;5:1–11.

    PubMed  PubMed Central  Google Scholar 

  49. Verploegh ISC, Conidi A, Brouwer RWW, Balcioglu HE, Karras P, Makhzami S. et al. Comparative single-cell RNA-sequencing profiling of BMP4-treated primary glioma cultures reveals therapeutic markers. Neuro Oncol. 2022;24:2133–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu J, Zhou Z, Li J, Liu H, Zhang H, Zhang J, et al. CHD4 promotes acquired chemoresistance and tumor progression by activating the MEK/ERK axis. Drug Resistance Updates. 2023;66:100913.

    Article  CAS  PubMed  Google Scholar 

  51. Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, et al. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1–2 signaling. Neuro-Oncol. 2021;23:611–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (82272644 to YL, 82372836 to WY, 82403965 to SC), Sichuan Science and Technology Program grant (2023YFQ0002 to YL), Sichuan Science and Technology Program grant (2023YFSY0042 to WY), Sichuan Science and Technology Program grant (2023YFG0127 to YY), and Sichuan Provincial Foundation of Science and Technology grant (2023NSFSC1867 to SZ).

Author information

Authors and Affiliations

Authors

Contributions

MRZ, MNC, and YHL investigated and designed the study. MRZ, SXZ, SLC, YBY, YZH, and WHL performed all experiments. MRZ, SXZ, YBY, SLC, WCY, TFL, ZHW, and YFX collected and analyzed all data. NC examined the diagnosis of human gliomas. MRZ, SXZ, MNC, YHZ, YY, QM, and YHL supervised the study. All authors wrote, reviewed, edited, and approved the publication of the original paper.

Corresponding authors

Correspondence to Mina Chen or Yanhui Liu.

Ethics declarations

Competing interests

MZ and YL hold an authorized Chinese invention patent relating to the method of the primary CAFs culturing (ZL202111097340.7). Other authors reported no conflict of interest.

Ethics approval and consent to participate

All procedures were performed in accordance with the ethical standards as outlined in the 1964 Declaration of Helsinki and its subsequent amendments, or with comparable ethical standards. All human tissues utilized in the present study were approved by the Ethics Committee on Biomedical Research, West China Hospital of Sichuan University (No.2021.1319), and attained written informed consent from patients or their legal guardians. All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of West China Hospital, Sichuan University, in compliance with the Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, M., Zhang, S., Chen, S. et al. Cytokine CCL2 secreted by cancer-associated fibroblasts augments temozolomide resistance in glioblastoma through ERK1/2 signaling. Oncogene 44, 4657–4670 (2025). https://doi.org/10.1038/s41388-025-03601-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03601-y

Search

Quick links