Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DARPP-32 is a novel regulator of M2-macrophage polarization: Sustains STAT6 phosphorylation by directly binding and inhibiting tyrosine phosphatase SHP-1

Abstract

Identifying novel factors driving M2-macrophage polarization may help understand immune modulation in cancers. We identified DARPP-32, a protein phosphatase inhibitor, to be significantly upregulated in FBXW7 knock out THP-1 spontaneously polarized to M2 macrophages. DARPP-32 levels remarkably increased in macrophages treated with different M2-inducers while it copiously decreased upon treatment with M1 inducer Lipopolysaccharide/IFN-γ. Intriguingly, mere DARPP-32 over-expression robustly promoted M2-macrophage polarization in different macrophage cell lines and murine primary bone marrow derived macrophages, even without any external stimulation. Conversely, DARPP-32 depletion hampered the IL-4 induced M2-polarization. Strikingly, DARPP-32 overexpression also dampened the classical M1 activation profile of macrophages in response to LPS, skewing their function towards more anti-inflammatory M2-like phenotype. Mechanistically, Thr34-phosphorylated DARPP-32 positively regulates JAK1-STAT6 signalling by directly binding and inhibiting protein tyrosine phosphatase SHP-1, a key regulator of immune cell signalling and macrophage activation. In line with increased DARPP-32 levels in M2-polarized macrophages, which are often tumor-associated macrophages, we also observed markedly increased DARPP-32 levels in tumor-infiltrating macrophages within primary TNBC tumors. We also observed an increase in DARPP-32 levels in macrophages co-cultured with tumor cells. This is first comprehensive study that demonstrate a novel function of DARPP-32 as a driver/regulator of macrophage polarization towards anti-inflammatory M2-phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteomic identification of DARPP-32 from M2 macrophages as a protein induced in differentiated macrophages.
Fig. 2: DARPP-32 is exclusively induced in M2-polarized macrophages.
Fig. 3: DARPP-32 overexpression skews macrophages towards anti-inflammatory M2 phenotype.
Fig. 4: DARPP-32 over-expression drives M2 and inhibits pro-inflammatory functions of M1 Macrophage.
Fig. 5: DARPP-32 sustains JAK1-STAT6 phosphorylation by directly binding and inhibiting protein tyrosine phosphatase SHP-1.
Fig. 6: DARPP-32 by skewing Mϕ towards M2-polarized state promotes immune-suppressive tumor microenvironment and inhibits T-cells activation.
Fig. 7: DARPP-32 expression correlates with higher Tumor Associated Macrophages (TAMs) infiltration.

Similar content being viewed by others

Data availability

Data and materials used in this study are available on request to corresponding author.

References

  1. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006;107:2112–22.

    Article  CAS  PubMed  Google Scholar 

  2. Petty AJ, Owen DH, Yang Y, Huang X. Targeting tumor-associated macrophages in cancer immunotherapy. Cancers. 2021;13:5318.

  3. He L, Jhong JH, Chen Q, Huang KY, Strittmatter K, Kreuzer J, et al. Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors. Cell Rep. 2021;37:109955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chowdhury S, Trivedi AK. Origin, production and molecular determinants of macrophages for their therapeutic targeting. Cell Biol Int. 2023;47:15–29.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-Based Approaches for Cancer Immunotherapy. Cancer Res. 2021;81:1201–8.

    Article  CAS  PubMed  Google Scholar 

  6. Giatromanolaki A, Mitrakas A, Anestopoulos I, Kontosis A, Koukourakis IM, Pappa A, et al. Expression of CD47 and SIRPalpha Macrophage Immune-Checkpoint Pathway in Non-Small-Cell Lung Cancer. Cancers. 2022;14:1801.

  7. Yumimoto K, Akiyoshi S, Ueo H, Sagara Y, Onoyama I, Ueo H, et al. F-box protein FBXW7 inhibits cancer metastasis in a non-cell-autonomous manner. J Clin Investig. 2015;125:621–35.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mishra M, Thacker G, Sharma A, Singh AK, Upadhyay V, Sanyal S, et al. FBW7 Inhibits Myeloid Differentiation in Acute Myeloid Leukemia via GSK3-Dependent Ubiquitination of PU.1. Mol Cancer Res: MCR. 2021;19:261–73.

    Article  CAS  PubMed  Google Scholar 

  9. McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci USA. 2013;110:17253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhong L, Zhang Y, Li M, Song Y, Liu D, Yang X, et al. E3 ligase FBXW7 restricts M2-like tumor-associated macrophage polarization by targeting c-Myc. Aging. 2020;12:24394–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission. Annu Rev Pharm Toxicol. 2004;44:269–96.

    Article  CAS  Google Scholar 

  12. Hemmings HC Jr, Greengard P, Tung HY, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature. 1984;310:503–5.

    Article  CAS  PubMed  Google Scholar 

  13. Walaas SI, Aswad DW, Greengard P. A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature. 1983;301:69–71.

    Article  CAS  PubMed  Google Scholar 

  14. Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron. 1999;23:435–47.

    Article  CAS  PubMed  Google Scholar 

  15. Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, et al. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature. 1999;402:669–71.

    Article  CAS  PubMed  Google Scholar 

  16. Girault JA, Nairn AC. DARPP-32 40 years later. Adv Pharm. 2021;90:67–87.

    Article  CAS  Google Scholar 

  17. Bhattacharjee A, Shukla M, Yakubenko VP, Mulya A, Kundu S, Cathcart MK. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic Biol Med. 2013;54:1–16.

    Article  CAS  PubMed  Google Scholar 

  18. Sethi A, Mishra S, Upadhyay V, Dubey P, Siddiqui S, Singh AK, et al. USP10 deubiquitinates and stabilizes CD44 leading to enhanced breast cancer cell proliferation, stemness and metastasis. Biochemical J. 2024;481:1877–1900.

    Article  CAS  Google Scholar 

  19. Luo YP, Zhou H, Krueger J, Kaplan C, Liao D, Markowitz D, et al. The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression. Oncogene. 2010;29:662–73.

    Article  CAS  PubMed  Google Scholar 

  20. Hamada M, Tsunakawa Y, Jeon H, Yadav MK, Takahashi S. Role of MafB in macrophages. Exp Anim. 2020;69:1–10.

    Article  CAS  PubMed  Google Scholar 

  21. Yadav MK, Inoue Y, Nakane-Otani A, Tsunakawa Y, Jeon H, Samir O, et al. Transcription factor MafB is a marker of tumor-associated macrophages in both mouse and humans. Biochem Biophys Res Commun. 2020;521:590–5.

    Article  CAS  PubMed  Google Scholar 

  22. Antwi EB, Olins A, Teif VB, Bieg M, Bauer T, Gu Z, et al. Whole-genome fingerprint of the DNA methylome during chemically induced differentiation of the human AML cell line HL-60/S4. Biol Open. 2020;9:bio044222.

  23. Doyle SL, O’Neill LA. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem Pharm. 2006;72:1102–13.

    Article  CAS  PubMed  Google Scholar 

  24. Wang G, Jin S, Huang W, Li Y, Wang J, Ling X, et al. LPS-induced macrophage HMGB1-loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome. Cell Death Discov. 2021;7:337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rahal OM, Wolfe AR, Mandal PK, Larson R, Tin S, Jimenez C, et al. Blocking Interleukin (IL)4- and IL13-Mediated Phosphorylation of STAT6 (Tyr641) Decreases M2 Polarization of Macrophages and Protects Against Macrophage-Mediated Radioresistance of Inflammatory Breast Cancer. Int J Radiat Oncol Biol Phys. 2018;100:1034–43.

    Article  CAS  PubMed  Google Scholar 

  26. Lu X, Malumbres R, Shields B, Jiang X, Sarosiek KA, Natkunam Y, et al. PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling. Blood. 2008;112:4098–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Su TH, Shiau CW, Jao P, Yang NJ, Tai WT, Liu CJ, et al. Src-homology protein tyrosine phosphatase-1 agonist, SC-43, reduces liver fibrosis. Sci Rep. 2017;7:1728.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu S, Soutto M, Chen Z, Blanca Piazuelo M, Kay Washington M, Belkhiri A, et al. Activation of IGF1R by DARPP-32 promotes STAT3 signaling in gastric cancer cells. Oncogene. 2019;38:5805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Z, Zhu S, Hong J, Soutto M, Peng D, Belkhiri A, et al. Gastric tumour-derived ANGPT2 regulation by DARPP-32 promotes angiogenesis. Gut. 2016;65:925–34.

    Article  CAS  PubMed  Google Scholar 

  30. Pu Y, Ji Q. Tumor-Associated Macrophages Regulate PD-1/PD-L1 Immunosuppression. Front Immunol. 2022;13:874589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 2008;456:814–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharmaceut Sin B. 2020;10:2156–70.

    Article  CAS  Google Scholar 

  33. Wang S, Wang J, Chen Z, Luo J, Guo W, Sun L, et al. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol. 2024;8:31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li M, He L, Zhu J, Zhang P, Liang S. Targeting tumor-associated macrophages for cancer treatment. Cell Biosci. 2022;12:85.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, et al. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol. 2022;12:925041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trizzino M, Zucco A, Deliard S, Wang F, Barbieri E, Veglia F, et al. EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. Sci Adv. 2021;7:eaaz8836.

  37. Yin L, Zhang J, Sun Y. Early growth response-1 is a new substrate of the GSK3beta-FBXW7 axis. Neoplasia. 2022;34:100839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao D, Zheng HQ, Zhou Z, Chen C. The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res. 2010;70:4728–38.

    Article  CAS  PubMed  Google Scholar 

  39. Huang SC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;15:846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Semrau MS, Giachin G, Covaceuszach S, Cassetta A, Demitri N, Storici P, et al. Molecular architecture of the glycogen- committed PP1/PTG holoenzyme. Nat Commun. 2022;13:6199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Na YR, Jung D, Gu GJ, Jang AR, Suh YH, Seok SH. The early synthesis of p35 and activation of CDK5 in LPS-stimulated macrophages suppresses interleukin-10 production. Sci Signal. 2015;8:ra121.

    Article  PubMed  Google Scholar 

  42. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity. 1996;4:313–9.

    Article  CAS  PubMed  Google Scholar 

  43. Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR. Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J Biol Chem. 1998;273:33893–6.

    Article  CAS  PubMed  Google Scholar 

  44. Bayik D, Lathia JD. Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer. 2021;21:526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li W, Wu F, Zhao S, Shi P, Wang S, Cui D. Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy. Cytokine Growth Factor Rev. 2022;67:49–57.

    Article  CAS  PubMed  Google Scholar 

  46. Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, et al. Expression of Vascular Endothelial Growth Factor in Ovarian Cancer Inhibits Tumor Immunity through the Accumulation of Myeloid-Derived Suppressor Cells. Clin Cancer Res J Am Assoc Cancer Res. 2017;23:587–99.

    Article  CAS  Google Scholar 

  47. Lin EY, Li JF, Bricard G, Wang W, Deng Y, Sellers R, et al. Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol. 2007;1:288–302.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Senior Research Fellowship (SRF) from the Department of Biotechnology (DBT), India to Sangita & Shivkant is acknowledged. Funding from Department of Biotechnology (DBT)-BioCARe to Swati Srivastava is also acknowledged. Fellowship from University Grants Commission (UGC) to Agniv Shome is acknowledged. We also thank Mr. A. L. Vishwakarma and Ms. Rima Ray Sarkar from FACS facility (Sophisticated and Analytical Instrument Facility, SAIF) and confocal microscopy unit, CSIR-CDRI respectively. CSIR-CDRI Manuscript communication number for this article is 11050.

Funding

This study was supported by funds from the Lady Tata Memorial Trust (LTMT), Mumbai (GAP0239) to AKT.

Author information

Authors and Affiliations

Authors

Contributions

Experimental design: SC and AKT; Data generation: SC, AS, SS, SKM, AShome, SSingh; Data Analysis: SC, SS, VU, AKS, and AKT; Clinical Sample and data analysis: MLB, AM and AKT; Manuscript preparation: SC, SS and AKT; Fund acquisition and Project monitoring: AKT.

Corresponding author

Correspondence to Arun Kumar Trivedi.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S., Sethi, A., Srivastava, S. et al. DARPP-32 is a novel regulator of M2-macrophage polarization: Sustains STAT6 phosphorylation by directly binding and inhibiting tyrosine phosphatase SHP-1. Oncogene 44, 4639–4656 (2025). https://doi.org/10.1038/s41388-025-03610-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03610-x

Search

Quick links