Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of the SLC25A15 transporter in the formation of liver metastasis in ESR1-mutated breast cancer

Abstract

Activating mutations in the ligand-binding domain of the estrogen receptor (ER)-encoding (ESR1) gene are present in up to 40% of metastatic breast cancer (BC) patients and are strongly associated with a high risk of liver metastasis (LM) formation. Using the MCF-7 BC model, we investigated whether the increased hepatic tropism of ESR1-mutated BC cells is driven by their metabolic adaptation to the liver microenvironment. Indeed, metabolomic analysis revealed elevated metabolites related to the urea cycle (UC) in LM-forming ESR1-mutated cells compared to wild-type (WT) ER-expressing cells, which failed to generate LM. The subsequent proteomic, western blotting, and qPCR analyses demonstrated a dramatic upregulation of the UC constituent, the mitochondrial ornithine/citrulline transporter SLC25A15, in liver-predilected ESR1-mutated cells relative to their WT counterpart cells. Unlike WT cells, ESR1-mutated cells readily formed spheroids and exhibited enhanced migration in liver mimicking hepatocyte-conditioned media. In addition, we employed a novel ex vivo approach where ESR1 mutated cells were seeded onto colonized fresh liver tissue—which was abolished by SLC25A15 knockout. Moreover, SLC25A15 knockout robustly reduced the ability of ESR1-mutated cells to establish LM in vivo. These findings highlight SLC25A15-mediated dysregulation of the UC as a critical driver of BC hepatic metastasis and identify SLC25A15 as a potential therapeutic target for disrupting metastatic spread of BC to the liver.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ER mutations promote liver metastasis formation by BC cells.
Fig. 2: Mutated-ER BC cells display enhanced urea cycle activity and elevated levels of SLC25A15.
Fig. 3: SLC25A15 deletion inhibits mitochondrial activity and UC in the mut-ER BC cells.
Fig. 4: Targeting SLC25A15 robustly inhibits hepatic tropism of mut-ER BC cells in vitro, ex vivo and in vivo.
Fig. 5: Elevated SLC25A15 in mut-ER cells promotes BC cell adaptation to the liver microenvironment.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol 2022;95. https://doi.org/10.1259/BJR.20211033.

  2. Pu CC, Yin L, Yan JM. Risk factors and survival prediction of young breast cancer patients with liver metastases: a population-based study. Front Endocrinol 2023; 14. https://doi.org/10.3389/fendo.2023.1158759.

  3. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A, Dvir A, Soussan-Gutman L, Jeselsohn R, et al. D538G mutation in estrogen receptor-α: A novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res. 2013;73:6856–64.

    Article  CAS  PubMed  Google Scholar 

  4. Zinger L, Merenbakh-Lamin K, Klein A, Elazar A, Journo S, Boldes T, et al. Ligand-binding domain–activating mutations of ESR1 rewire cellular metabolism of breast cancer cells. Clin Cancer Res. 2019;25:2900–14. https://doi.org/10.1158/1078-0432.ccr-18-1505.

    Article  CAS  PubMed  Google Scholar 

  5. Pegram M, Jackisch C, Johnston SRD. Estrogen/HER2 receptor crosstalk in breast cancer: combination therapies to improve outcomes for patients with hormone receptor-positive/HER2-positive breast cancer. npj Breast Cancer. 2023;9:45. https://doi.org/10.1038/s41523-023-00533-2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res. 2014;20:1757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015;12:573–83. https://doi.org/10.1038/nrclinonc.2015.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chandarlapaty S, Chen D, He W, Sung P, Samoila A, You D, et al. Prevalence of ESR1 mutations in cell-free DNA and Outcomes in Metastatic Breast Cancer. JAMA Oncol. 2016;2:1310. https://doi.org/10.1001/jamaoncol.2016.1279.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reinert T, Coelho GP, Mandelli J, Zimermann E, Zaffaroni F, Bines J, et al. Association of ESR1 mutations and visceral metastasis in patients with estrogen receptor-positive advanced breast cancer from Brazil. J Oncol. 2019;2019:1–5. https://doi.org/10.1155/2019/1947215.

    Article  CAS  Google Scholar 

  10. Wu Y, Li Z, Lee AV, Oesterreich S, Luo B. Liver tropism of ER mutant breast cancer is characterized by unique molecular changes and immune infiltration. Breast Cancer Res Treat. 2024;205:371–86. https://doi.org/10.1007/s10549-024-07255-4.

    Article  CAS  PubMed  Google Scholar 

  11. Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis Organotropism: redefining the congenial soil. Dev Cell. 2019;49:375–91. https://doi.org/10.1016/j.devcel.2019.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol Cell. 2021;81:3749–59.

    Article  CAS  PubMed  Google Scholar 

  13. Keshet R, Szlosarek P, Carracedo A, Erez A. Rewiring urea cycle metabolism in cancer to support anabolism. Nat Rev Cancer. 2018;18:634–45.

    Article  CAS  PubMed  Google Scholar 

  14. Qiu F, Chen YR, Liu X, Chu CY, Shen LJ, Xu J, et al. Cancer: Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal 2014, 7. https://doi.org/10.1126/scisignal.2004761.

  15. Rabinovich S, Adler L, Yizhak K, Sarver A, Silberman A, Agron S, et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature. 2015;527:379–83. https://doi.org/10.1038/nature15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ji S. Overexpression of SLC25A15 is involved in the proliferation of cutaneous melanoma and leads to poor prognosis. Medecine/Sci. 2018;34:74–80. https://doi.org/10.1051/medsci/201834f113.

    Article  Google Scholar 

  17. Zou Z, Hu X, Luo T, Ming Z, Chen X, Xia L, et al. Naturally-occurring spinosyn A and its derivatives function as argininosuccinate synthase activator and tumor inhibitor. Nat Commun. 2021;12:2263. https://doi.org/10.1038/s41467-021-22235-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang T, Hu L, Tang JF, Xu H, Tian K, Wu MN, et al. Metformin inhibits the urea cycle and reduces putrescine generation in colorectal cancer cell lines. Molecules. 2021;26:1990. https://doi.org/10.3390/molecules26071990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taya M, Merenbakh-Lamin K, Zubkov A, Honig Z, Kurolap A, Mayer O, et al. Beyond endocrine resistance: estrogen receptor (ESR1) activating mutations mediate chemotherapy resistance through the JNK/c-Jun MDR1 pathway in breast cancer. Breast Cancer Res Treat. 2024;209:431–49.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6:275–7. https://doi.org/10.1038/nmeth.1314.

    Article  CAS  PubMed  Google Scholar 

  21. Feldman B, Fedida-Metula S, Nita J, Sekler I, Fishman D. Coupling of mitochondria to store-operated Ca(2+)-signaling sustains constitutive activation of protein kinase B/Akt and augments survival of malignant melanoma cells. Cell Calcium. 2010;47:525–37. https://doi.org/10.1016/j.ceca.2010.05.002.

    Article  CAS  PubMed  Google Scholar 

  22. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res. 2014;20:1757–67. https://doi.org/10.1158/1078-0432.CCR-13-2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei Q, Qian Y, Yu J, Wong CC. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene. 2020;39:6139–56. https://doi.org/10.1038/s41388-020-01432-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Häussinger D, Sies H, Gerok W. Functional hepatocyte heterogeneity in ammonia metabolism. The intercellular glutamine cycle. J Hepatol. 1985;1:3–14. https://doi.org/10.1016/S0168-8278(85)80063-5.

    Article  PubMed  Google Scholar 

  25. Martí i Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci. 2021;78:5303–24. https://doi.org/10.1007/s00018-021-03828-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toy W, Weir H, Razavi P, Lawson M, Goeppert AU, Mazzola AM, et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov. 2017;7:277–87. https://doi.org/10.1158/2159-8290.CD-15-1523.

    Article  CAS  PubMed  Google Scholar 

  27. Corné J, Quillien V, Callens C, Portois P, Bidard FC, Jeannot E, et al. Development of sensitive and robust multiplex digital PCR assays for the detection of ESR1 mutations in the plasma of metastatic breast cancer patients. Clin Chim Acta. 2023;545:117366. https://doi.org/10.1016/j.cca.2023.117366.

    Article  CAS  PubMed  Google Scholar 

  28. Decotret LR, Shi R, Thomas KN, Hsu M, Pallen CJ, Bennewith KL. Development and validation of an advanced ex vivo brain slice invasion assay to model glioblastoma cell invasion into the complex brain microenvironment. Front Oncol 2023;13. https://doi.org/10.3389/fonc.2023.976945.

  29. Neve A, Santhana Kumar K, Tripolitsioti D, Grotzer MA, Baumgartner M. Investigation of brain tissue infiltration by medulloblastoma cells in an ex vivo model. Sci Rep. 2017;7. 5297. https://doi.org/10.1038/s41598-017-05573-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eisemann T, Costa B, Strelau J, Mittelbronn M, Angel P, Peterziel H. An advanced glioma cell invasion assay based on organotypic brain slice cultures. BMC Cancer. 2018;18:103. https://doi.org/10.1186/s12885-018-4007-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grotzer MA, Neve A, Baumgartner M. Dissecting brain tumor growth and metastasis in vitro and ex vivo. J Cancer Metastasis Treat. 2016;2:149. https://doi.org/10.20517/2394-4722.2016.02.

    Article  CAS  Google Scholar 

  32. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol. 2016;4. https://doi.org/10.3389/fbioe.2016.00012.

  33. Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis MG, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 2015;22:577–89. https://doi.org/10.1016/j.cmet.2015.08.007.

    Article  CAS  PubMed  Google Scholar 

  34. Ghosh N, Mahalanobish S. PCS. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharm. 2024;228:116326 https://doi.org/10.1016/j.bcp.2024.116326.

    Article  CAS  PubMed  Google Scholar 

  35. Dermit M, Dodel M, Mardakheh FK. Methods for monitoring and measurement of protein translation in time and space. Mol Biosyst. 2017;13:2477–88. https://doi.org/10.1039/c7mb00476a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Q, Wei T, Jin W, Yan L, Shi L, Zhu S, et al. Deficiency in SLC25A15, a hypoxia-responsive gene, promotes hepatocellular carcinoma by reprogramming glutamine metabolism. J Hepatol. 2024;80:293–308. https://doi.org/10.1016/j.jhep.2023.10.024.

    Article  CAS  PubMed  Google Scholar 

  37. Goddard ET, Fischer J, Schedin P. A portal vein injection model to study liver metastasis of breast cancer. J Vis Exp 2016;2016. https://doi.org/10.3791/54903.

  38. Khanna C. Hunter K. Modeling metastasis in vivo. Carcinogenesis. 2004;26:513–23. https://doi.org/10.1093/carcin/bgh261.

    Article  PubMed  Google Scholar 

  39. Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Salem AF, Tsirigos A, Lamb R, et al. Mitochondria ‘fuel’ breast cancer metabolism: Fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle. 2012;11:4390–401. https://doi.org/10.4161/cc.22777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lytovchenko O, Kunji ERS. Expression and putative role of mitochondrial transport proteins in cancer. Biochim Biophys Acta - Bioenerg. 2017;1858:641–54. https://doi.org/10.1016/j.bbabio.2017.03.006.

    Article  CAS  PubMed  Google Scholar 

  41. Zuo Q, Mogol AN, Liu YJ, Santaliz Casiano A, Chien C, Drnevich J, et al. Targeting metabolic adaptations in the breast cancer–liver metastatic niche using dietary approaches to improve endocrine therapy efficacy. Mol Cancer Res. 2022;20:923–37. https://doi.org/10.1158/1541-7786.MCR-21-0781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Israel Science Foundation to D.F, I.W and T.R (grant no 2861/24), and by The Dubrovsky Family Research Fund for Solid Cancers, the Cancer Biology Research Center, Tel-Aviv University to I.W and T.R.

Author information

Authors and Affiliations

Authors

Contributions

MT- Collected the data, performed the analysis of in vitro and in vivo assays, and wrote the manuscript. DF- Conceived the research, collected the data, and performed the analysis of in vitro assays. FK- performed in vivo experiment. IS- Conceived and contributed to the analysis. IW- Conceived and designed the analysis. TR- Conceived and designed the analysis, performed the analysis, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ido Wolf, Israel Sekler or Tami Rubinek.

Ethics declarations

Competing interests

The authors declare no competing of interest.

Ethical approval

The experiments on animals were conducted in accordance with the institutional guidelines of the Sourasky Medical Center, in accordance with current regulations and standards of the institution's Animal Care and Use Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taya, M., Fishman, D., Kanani, F. et al. The role of the SLC25A15 transporter in the formation of liver metastasis in ESR1-mutated breast cancer. Oncogene 45, 603–619 (2026). https://doi.org/10.1038/s41388-025-03640-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03640-5

Search

Quick links