Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP10 promotes cell proliferation and gemcitabine resistance in pancreatic cancer by the regulation of IGF2BP3-STEAP3

Abstract

Gemcitabine resistance remains a major obstacle in the treatment of pancreatic adenocarcinoma (PDAC). Through gain- and loss-of-function experiments, we identified USP10 as a positive regulator of tumor growth and gemcitabine resistance. Mechanistically, we demonstrate that USP10 stabilizes IGF2BP3 by removing its K48- and K63-linked ubiquitin chains, thereby inhibiting proteasomal degradation. The stabilized IGF2BP3 binds to and enhances the stability of STEAP3 mRNA in an m⁶A-dependent manner. Upregulation of STEAP3 suppresses ferroptosis by increasing glutathione levels and reducing lipid peroxidation, ultimately promoting tumor proliferation and gemcitabine resistance. Our study identifies the USP10-IGF2BP3-STEAP3 axis as a critical mechanism underlying chemoresistance in pancreatic cancer, suggesting that targeting USP10 may offer a promising therapeutic strategy for overcoming gemcitabine resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: USP10 is significantly overexpressed in pancreatic cancer and associated with gemcitabine resistance and poor prognosis.
Fig. 2: USP10 promotes pancreatic cancer cell proliferation and gemcitabine resistance.
Fig. 3: USP10 interaction with IGF2BP3, deubiquitinating IGF2BP3 to stabilize its protein expression.
Fig. 4: The USP10-IGF2BP3 axis is critical for pancreatic cancer progression and chemoresistance to gemcitabine.
Fig. 5: IGF2BP3 positively regulates STEAP3 expression.
Fig. 6: STEAP3 promotes cancer cell growth and facilitates gemcitabine resistance in PAAD by suppressing ferroptosis.
Fig. 7: STEAP3 overexpression counteracts the effect induced by IGF2BP3 knockdown.
Fig. 8: Clinical significance of the USP10-IGF2BP3-STEAP3 axis in gemcitabine resistance.

Similar content being viewed by others

Data availability

The datasets generated during or analyzed during the current study are available from the corresponding authors on reasonable request. Figshare :https://doi.org/10.6084/m9.figshare.30017347.

References

  1. Siegel R, Miller K, Wagle N, Jemal A. Cancer statistics, 2023. CA: A Cancer J Clin. 2023;73:17–48.

    Google Scholar 

  2. Qiu H, Cao H, Cao S, Xu R. Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun (Lond, Engl). 2021;41:1037–48.

    Article  Google Scholar 

  3. Chen X, Zeh X, Zeh H, Kang H, Kang R, Kroemer R, et al. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol. 2021;18:804–23.

    Article  PubMed  Google Scholar 

  4. Park W, Chawla W, Chawla A, O’Reilly E. Pancreatic cancer: a review. JAMA. 2021;326:851–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tempero M, Malafa M, Al-Hawary M, Behrman S, Benson A, Cardin D, et al. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw: JNCCN. 2021;19:439–57.

    Article  PubMed  CAS  Google Scholar 

  6. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann Oncol. 2006;17 Suppl 5:v7-12.

  7. Wood L, Canto L, Canto M, Jaffee M, Jaffee E, Simeone D, et al. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022;163:386–402.e1.

    Article  PubMed  Google Scholar 

  8. Waks A, Winer E. Breast Cancer Treatment: A Review. JAMA. 2019;321:288–300.

    Article  PubMed  CAS  Google Scholar 

  9. Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder Cancer: A Review. JAMA. 2020;324:1980–91.

    Article  PubMed  CAS  Google Scholar 

  10. Ho W, Jaffee W, Jaffee E, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol. 2020;17:527–40.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Capula M, Per M, Perán M, Xu M, Xu G, Donati G, et al. Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist Updat. 2022;64:100864.

    Article  PubMed  CAS  Google Scholar 

  12. McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov. 2013;12:217–28.

    Article  PubMed  CAS  Google Scholar 

  13. Wei L, Lin L, Lin Q, Lu Q, Lu Y, Li Y, et al. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis. 2021;12:334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shigeta K, Hasegawa K, Hasegawa M, Hishiki M, Hishiki T, Naito T, et al. IDH2 stabilizes HIF-1α-induced metabolic reprogramming and promotes chemoresistance in urothelial cancer. EMBO J. 2023;42:e110620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yao H, Song H, Song W, Cao W, Cao R, Ye R, et al. An EGFR/HER2-targeted conjugate sensitizes gemcitabine-sensitive and resistant pancreatic cancer through different SMAD4-mediated mechanisms. Nat Commun. 2022;13:5506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Wu Y, Wu X, Ren X, Ren Z, Li Z, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 2023;66:100916.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang C, Liu C, Liu X, Jin X, Jin S, Chen S, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer. 2022;21:47.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qi R, Bai R, Bai Y, Li Y, Li K, Liu K, et al. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 2023;68:100960.

    Article  PubMed  CAS  Google Scholar 

  20. Liu J, Zhang S, Cao L, Zhang N, Guo Q, Zou Y, et al. The deubiquitination-PARylation positive feedback loop of the USP10-PARP1 axis promotes DNA damage repair and affects therapeutic efficacy of PARP1 inhibitor. Oncogene. 2025;44:2515–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cao Y, Xie Y, Xie L, Tong L, Tong B, Chu B, et al. Targeting USP10 induces degradation of oncogenic ANLN in esophageal squamous cell carcinoma. Cell Death Differ. 2023;30:527–43.

    Article  PubMed  CAS  Google Scholar 

  22. Li F, He Z, Zhang X, Gao D, Xu R, Zhang Z, et al. USP10 promotes cell proliferation, migration, and invasion in NSCLC through deubiquitination and stabilization of EIF4G1. Sci Rep. 2024;14:23685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yuan T, Chen Z, Yan F, Qian M, Luo H, Ye S, et al. Deubiquitinating enzyme USP10 promotes hepatocellular carcinoma metastasis through deubiquitinating and stabilizing Smad4 protein. Mol Oncol. 2020;14:197–210.

    Article  PubMed  CAS  Google Scholar 

  24. Zhai S, Lin S, Lin J, Ji J, Ji Y, Zhang Y, et al. A microprotein N1DARP encoded by LINC00261 promotes Notch1 intracellular domain (N1ICD) degradation via disrupting USP10-N1ICD interaction to inhibit chemoresistance in Notch1-hyperactivated pancreatic cancer. Cell Discov. 2023;9:95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liu X, Zhang S, An Y, Xu B, Yan G, Sun M. USP10/XAB2/ANXA2 axis promotes DNA damage repair to enhance chemoresistance to oxaliplatin in colorectal cancer. J Exp Clin Cancer Res. 2025;44:94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Luo P, Qin P, Qin C, Zhu C, Zhu L, Fang L, et al. Ubiquitin-specific peptidase 10 (USP10) inhibits hepatic steatosis, insulin resistance, and inflammation through Sirt6. Hepatol (Balt, Md). 2018;68:1786–803.

    Article  CAS  Google Scholar 

  27. Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov. 2018;17:57–78.

    Article  PubMed  CAS  Google Scholar 

  28. Hu C, Zhang M, Moses N, Hu CL, Polin L, Chen W, et al. The USP10-HDAC6 axis confers cisplatin resistance in non-small cell lung cancer lacking wild-type p53. Cell Death Dis. 2020;11:328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sun L, Yu J, Guinney J, Qin B, Sinicrope FA. USP10 regulates ZEB1 ubiquitination and protein stability to inhibit ZEB1-mediated colorectal cancer metastasis. Mol Cancer Res. 2023;21:578–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhao X, Ma Y, Li J, Sun X, Sun Y, Qu F, et al. The AEG-1-USP10-PARP1 axis confers radioresistance in esophageal squamous cell carcinoma via facilitating homologous recombination-dependent DNA damage repair. Cancer Lett. 2023;577:216440.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu H, Yan F, Yuan T, Qian M, Zhou T, Dai X, et al. USP10 promotes proliferation of hepatocellular carcinoma by deubiquitinating and stabilizing YAP/TAZ. Cancer Res. 2020;80:2204–16.

    Article  PubMed  CAS  Google Scholar 

  32. Wang X, Xia S, Li H, Wang X, Li C, Chao Y, et al. The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ. 2020;27:1747–64.

    Article  PubMed  CAS  Google Scholar 

  33. Yuan J, Luo K, Zhang L, Cheville J, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 2010;140:384–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Dikic I, Schulman BA. An expanded lexicon for the ubiquitin code. Nat Rev Mol Cell Biol. 2023;24:273–87.

    Article  PubMed  CAS  Google Scholar 

  35. Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28:591–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li K, Guo J, Ming Y, Chen S, Zhang T, Ma H, et al. A circular RNA activated by TGFβ promotes tumor metastasis through enhancing IGF2BP3-mediated PDPN mRNA stability. Nat Commun. 2023;14:6876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen B, Huang R, Xia T, Wang C, Xiao X, Lu S, et al. The m⁶A reader IGF2BP3 preserves NOTCH3 mRNA stability to sustain Notch3 signaling and promote tumor metastasis in nasopharyngeal carcinoma. Oncogene. 2023;42:3564–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ge L, Rui Y, Wang C, Wu Y, Wang H, Wang J. The RNA m⁶A reader IGF2BP3 regulates NFAT1/IRF1 axis-mediated anti-tumor activity in gastric cancer. Cell Death Dis. 2024;15:192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhang X, Shi L, Sun HD, Wang ZW, Xu F, Wei JF, et al. IGF2BP3 mediates the mRNA degradation of NF1 to promote triple-negative breast cancer progression via an m⁶A-dependent manner. Clin Transl Med. 2023;13:e1427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Xu X, Zhang Y, Wu S, Wu Y, Lin X, Chen K, et al. Hepatitis B virus promotes angiogenesis in hepatocellular carcinoma by increasing m⁶A modification of VEGFA mRNA via IGF2BP3. J Med Virol. 2025;97:e70356.

    Article  PubMed  CAS  Google Scholar 

  41. Zhao W, Lu D, Liu L, Cai J, Zhou Y, Yang Y, et al. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) promotes lung tumorigenesis via attenuating p53 stability. Oncotarget. 2017;8:93672–87.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.

    Article  PubMed  CAS  Google Scholar 

  43. Lomphithak T, Sae-Fung A, Sprio S, Tampieri A, Jitkaew S, Fadeel B. Exploiting the ferroaddiction of pancreatic cancer cells using Fe-doped nanoparticles. Nanomedicine. 2024;55:102714.

    Article  PubMed  CAS  Google Scholar 

  44. Deng P, Li J, Lu Y, Hao R, He M, Li M, et al. Chronic cadmium exposure triggered ferroptosis by perturbing the STEAP3-mediated glutathione redox balance linked to altered metabolomic signatures in humans. Sci Total Environ. 2023;905:167039.

    Article  PubMed  CAS  Google Scholar 

  45. Lan J, Zhang W, Zeng K, Li C, He J, Li X, et al. β-elemene promotes ferroptosis to improve the sensitivity of imatinib in gastrointestinal stromal tumours by targeting N6AMT1. Clin Transl Med. 2025;15:e70438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cañeque T, Baron L, Müller S, Carmona A, Colombeau L, Versini A, et al. Activation of lysosomal iron triggers ferroptosis in cancer. Nature. 2025;642:492–500.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Wang Y, Patel H, Chen J, Wang J, Chen ZS, et al. Epigenetic modification of m⁶A regulator proteins in cancer. Mol Cancer. 2023;22:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Pan Y, Gu Y, Liu T, Zhang Q, Yang F, Duan L, et al. Epitranscriptic regulation of HRAS by N6-methyladenosine drives tumor progression. Proc Natl Acad Sci USA. 2023;120:e2302291120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zheng M, Wang S, Tang K, Kong R, Wang X, Zhou J, et al. The CYLD-PARP1 feedback loop regulates DNA damage repair and chemosensitivity in breast cancer cells. Proc Natl Acad Sci USA. 2025;122:e2413890121.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, et al. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ. 2019;26:2300–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Du L, Li Y, Kang M, Feng M, Ren Y, Dai H, et al. USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization. Cancer Res. 2021;81:3822–34.

    Article  PubMed  CAS  Google Scholar 

  52. Xu MH, Zheng YM, Liang BG, Xu WX, Cao J, Wang P, et al. Deubiquitination of CIB1 by USP14 promotes lenvatinib resistance via the PAK1-ERK1/2 axis in hepatocellular carcinoma. Int J Biol Sci. 2024;20:3269–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Cervia LD, Shibue T, Borah AA, Gaeta B, He L, Leung L, et al. A ubiquitination cascade regulating the integrated stress response and survival in carcinomas. Cancer Discov. 2023;13:766–95.

    Article  PubMed  CAS  Google Scholar 

  54. Du X, Yu R, Yan C, Dong P, Wei C, Wang B, et al. USP10 promotes the progression and attenuates gemcitabine chemotherapy sensitivity via stabilizing PLK1 in PDAC. Cell Death Dis. 2025;16:449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Institute of Gastrointestinal Disease, the Sixth Affiliated Hospital of Sun Yat-Sen University for support with equipment and site.

Funding

This study was supported by National Natural Science Youth Foundation of China (Z201901022021121076), Discipline construction fund of the Sixth Affiliated Hospital of Sun Yat-Sen University (X202102172026091185), National Natural Science Youth Foundation of China (No. Z201901022021121076; No. 82403535) and China postdoctoral science foundation (2023M744076, 2024T171079).

Author information

Authors and Affiliations

Authors

Contributions

Y-lL, C-RZ, and J-YW performed most of the cellular, biochemical, and animal experiments. Z-JL and Z-L partially designed the experimental plans and contributed to the cellular and biochemical experiments. T-jY, Z-PC, H-LJ, and J-DY partially contributed to the data analysis and provided the technological support for animal experiments. G-LL, Y-LW, and Z-YL designed experiments, supervised the project analyzed results, and wrote the paper.

Corresponding authors

Correspondence to Ze-Yu Lin, Yun-Le Wan or Guo-Lin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted in compliance with international, national, and institutional regulations regarding animal experiments, clinical studies, and biodiversity rights. All participants signed an informed consent form and this information was submitted to the ethics committee for the assignment of an ethical approval code. The Institutional Review Board of The Sixth Affiliated Hospital of Sun Yat-Sen University approved this study. Approval number: IACUC-2022081101. The study was performed in accordance with the Declaration of Helsinki.

Consent for publication

All authors reviewed and approved the manuscript prior to submission.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YL., Zhong, CR., Wu, JY. et al. USP10 promotes cell proliferation and gemcitabine resistance in pancreatic cancer by the regulation of IGF2BP3-STEAP3. Oncogene 45, 383–397 (2026). https://doi.org/10.1038/s41388-025-03654-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03654-z

Search

Quick links