Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An H4K12la/CEBPB-AKR1C2 signaling axis modulates the mTOR pathway to regulate cisplatin resistance in lung cancer

Abstract

Histone lactylation, a recently discovered epigenetic modification, has been shown to play a critical role in regulating gene expression and cellular functions. However, its involvement in cisplatin (CDDP) resistance in non-small cell lung cancer (NSCLC) remains poorly understood. In this study, we demonstrated that histone lactylation is closely associated with CDDP resistance and correlates with poor prognosis of NSCLC. Mechanistically, H4K12la (histone e 4 lysine 12 lactylation) levels and CEBPB (CCAAT/enhancer-binding protein beta) had a cooperative effect on the regulation of AKR1C2 (Aldo-Keto reductase 1C2). Furthermore, AKR1C2 knockdown activates the mTOR oncogenic signaling pathway. Importantly, genetic manipulation of AKR1C2 or the combination of CDDP with an mTOR inhibitor effectively reverse CDDP resistance in NSCLC/CDDP cells. These findings highlighted the potential of AKR1C2 as a predictive biomarker for patient response to CDDP therapy. Additionally, our study established a novel link between histone lactylation and CDDP resistance, providing new insights into the epigenetic regulation in NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histone lactylation is decreased in NSCLC/CDDP cells.
Fig. 2: Histone lactylation activated transcription of AKR1C2.
Fig. 3: The efficacy of CDDP is altered when AKR1C2 is regulated by genetic intervention in vitro and in vivo.
Fig. 4: The transcription factor CEBPB is involved in the transcriptional activation of AKR1C2.
Fig. 5: The transcriptional activation of AKR1C2 is cooperatively regulated by CEBPB and H4K12la.
Fig. 6: AKR1C2 mediated cisplatin resistance through mTOR pathway.

Similar content being viewed by others

Data availability

All data analyzed during this study are included in this published article and its supplementary information files.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.

    CAS  PubMed  Google Scholar 

  3. Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, et al. Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev. 2016;44:42–50.

    CAS  PubMed  Google Scholar 

  4. Kuo MT, Chen HH, Song IS, Savaraj N, Ishikawa T. The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev. 2007;26:71–83.

    CAS  PubMed  Google Scholar 

  5. Li ZH, Qiu MZ, Zeng ZL, Luo HY, Wu WJ, Wang F, et al. Copper-transporting P-type adenosine triphosphatase (ATP7A) is associated with platinum-resistance in non-small cell lung cancer (NSCLC). J Transl Med. 2012;10:21.

    PubMed  PubMed Central  Google Scholar 

  6. Liao XZ, Gao Y, Sun LL, Liu JH, Chen HR, Yu L, et al. Rosmarinic acid reverses non-small cell lung cancer cisplatin resistance by activating the MAPK signaling pathway. Phytother Res. 2020;34:1142–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen HH, Yan JJ, Chen WC, Kuo MT, Lai YH, Lai WW, et al. Predictive and prognostic value of human copper transporter 1 (hCtr1) in patients with stage III non-small-cell lung cancer receiving first-line platinum-based doublet chemotherapy. Lung Cancer. 2012;75:228–34.

    PubMed  Google Scholar 

  8. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, et al. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5:e1257.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Heyza JR, Lei W, Watza D, Zhang H, Chen W, Back JB, et al. Identification and characterization of synthetic viability with ERCC1 deficiency in response to interstrand crosslinks in lung cancer. Clin Cancer Res. 2019;25:2523–36.

    CAS  PubMed  Google Scholar 

  10. Mazzoni F, Cecere FL, Meoni G, Giuliani C, Boni L, Camerini A, et al. Phase II trial of customized first line chemotherapy according to ERCC1 and RRM1 SNPs in patients with advanced non-small-cell lung cancer. Lung Cancer. 2013;82:288–93.

    PubMed  Google Scholar 

  11. Weaver DA, Crawford EL, Warner KA, Elkhairi F, Khuder SA, Willey JC. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines. Mol Cancer. 2005;4:18.

    PubMed  PubMed Central  Google Scholar 

  12. Ren T, Shan J, Li M, Qing Y, Qian C, Wang G, et al. Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhances the antitumor efficacy of cisplatin through inhibition of APE1 repair and redox activity in non-small-cell lung cancer. Drug Des Devel Ther. 2015;9:2887–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun CY, Zhu Y, Li XF, Wang XQ, Tang LP, Su ZQ, et al. Scutellarin increases Cisplatin-induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways. Front Pharmacol. 2018;9:92.

    PubMed  PubMed Central  Google Scholar 

  14. Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B, et al. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res. 2010;70:9937–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Liu X, Ren Y, Zhang J, Chen J, Zhou W, et al. Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity. Cell Death Dis. 2017;8:e2746.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.

    CAS  PubMed  Google Scholar 

  17. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.

    CAS  PubMed  Google Scholar 

  18. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    CAS  PubMed  Google Scholar 

  19. Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, et al. Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 2020;10:8721–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang W, Zhao M, Cui L, Ren Y, Zhang J, Chen J, et al. Characterization of a novel HDAC/RXR/HtrA1 signaling axis as a novel target to overcome cisplatin resistance in human non-small cell lung cancer. Mol Cancer. 2020;19:134.

    PubMed  PubMed Central  Google Scholar 

  21. Wang W, Wang J, Liu S, Ren Y, Wang J, Liu S, et al. An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer. Mol Cancer. 2022;21:106.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD, Pasare C. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci USA. 2020;117:30628–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li L, Chen K, Wang T, Wu Y, Xing G, Chen M, et al. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nat Metab. 2020;2:882–92.

    CAS  PubMed  Google Scholar 

  25. Yang J, Luo L, Zhao C, Li X, Wang Z, Zeng Z, et al. A positive feedback loop between inactive vhl-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression. Int J Biol Sci. 2022;18:3470–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vasan K, Werner M, Chandel NS. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 2020;32:341–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu H, Tong W, Jiang M, Liu H, Meng C, Wang K, et al. Mitochondria-targeted multifunctional nanoprodrugs by inhibiting metabolic reprogramming for combating cisplatin-resistant lung cancer. ACS Nano. 2024;18:21156–70.

    CAS  PubMed  Google Scholar 

  28. Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, Procaccini C, et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23:1542–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sriramkumar S, Sood R, Huntington TD, Ghobashi AH, Vuong TT, Metcalfe TX, et al. Platinum-induced mitochondrial OXPHOS contributes to cancer stem cell enrichment in ovarian cancer. J Transl Med. 2022;20:246.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li X, Chen M, Chen X, He X, Li X, Wei H, et al. TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation. Eur Heart J. 2024;45:4219–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang H, Xia H, Bai J, Wang Z, Wang Y, Lin J, et al. H4K12 lactylation-regulated NLRP3 is involved in cigarette smoke-accelerated Alzheimer-like pathology through mTOR-regulated autophagy and activation of microglia. J Hazard Mater. 2025;488:137310.

    CAS  PubMed  Google Scholar 

  32. Zhang Y, Zhang X. Virus-induced histone lactylation promotes virus infection in crustacean. Adv Sci. 2024;11:e2401017.

    Google Scholar 

  33. Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 2022;131:893–908.

    CAS  PubMed  Google Scholar 

  34. Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, et al. Protein lactylation induced by neural excitation. Cell Rep. 2021;37:109820.

    CAS  PubMed  Google Scholar 

  35. Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22:85.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Di Giorgio E, Dalla E, Tolotto V, D’Este F, Paluvai H, Ranzino L, et al. HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair. Nucleic Acids Res. 2024;52:8218–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Moreno-Yruela C, Zhang D, Wei W, Bæk M, Liu W, Gao J, et al. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv. 2022;8:eabi6696.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang H, Zhang D, Weng Y, Delaney K, Tang Z, Yan C, et al. The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway. Sci Adv. 2021;7:eabe2771.

  39. Liu N, Konuma T, Sharma R, Wang D, Zhao N, Cao L, et al. Histone H3 lysine 27 crotonylation mediates gene transcriptional repression in chromatin. Mol Cell. 2023;83:2206–21.e11.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Eckardt JR, Bentsion DL, Lipatov ON, Polyakov IS, Mackintosh FR, Karlin DA, et al. Phase II study of picoplatin as second-line therapy for patients with small-cell lung cancer. J Clin Oncol. 2009;27:2046–51.

    CAS  PubMed  Google Scholar 

  41. Zhao Y, Zhang LX, Jiang T, Long J, Ma ZY, Lu AP, et al. The ups and downs of Poly(ADP-ribose) Polymerase-1 inhibitors in cancer therapy-Current progress and future direction. Eur J Med Chem. 2020;203:112570.

    CAS  PubMed  Google Scholar 

  42. Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H, et al. Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem. 2006;281:31440–7.

    CAS  PubMed  Google Scholar 

  43. Ye L, Gu L, Wang Y, Xing H, Li P, Guo X, et al. Identification of TMZ resistance-associated histone post-translational modifications in glioblastoma using multi-omics data. CNS Neurosci Ther. 2024;30:e14649.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82025007, 82303085 and U24A20676), the China Postdoctoral Science Foundation (2023TQ0229, 2023M742503, GZB20230491), the Natural Science Foundation of Sichuan Province (2024NSFSC1891), Innovation Group Project from Science & Technology Department of Sichuan Province (2023NSFSC1993) and the Postdoctoral Research Fund of West China Hospital, Sichuan University (2024HXBH137).

Author information

Authors and Affiliations

Authors

Contributions

WJW and JHH conceived the study. WJW designed the experiments. WJW, QH, TFF, YX, YMX, QHL, and NY performed the experiments. WJW and QH analyzed the data. YPL, YNX, and JHH provided guidance and advice. WJW and JHH wrote and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinhan He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and informed consent

The research presented here has been performed in accordance with the Declaration of Helsinki and has been approved by the ethics committee of Sichuan University and West China Hospital.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., He, Q., Fan, T. et al. An H4K12la/CEBPB-AKR1C2 signaling axis modulates the mTOR pathway to regulate cisplatin resistance in lung cancer. Oncogene 45, 650–662 (2026). https://doi.org/10.1038/s41388-025-03669-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03669-6

Search

Quick links