Abstract
Background
Few studies have analyzed the combined effect of lifestyle factors on academic performance (AP) in adolescents. The aim of this study was to analyze the independent and combined effects of weight status, screen time, sleep quality, daily meal frequency, cardiorespiratory fitness, and physical activity (PA) on AP in adolescents.
Methods
A total of 262 adolescents (13.9 ± 0.3 years) from the DADOS study were included in the analysis. Weight status was assessed through body mass index (kg/m2). Participants completed questionnaires to evaluate screen time, sleep quality, and daily meal frequency. Cardiorespiratory fitness was assessed by the 20-m shuttle run test. PA was evaluated by a wrist-worn GENEActiv accelerometer. AP was assessed through the final academic grades and a validated questionnaire.
Results
Non-overweight status, low screen time, good sleep quality, and proper meal frequency showed independent, positive influence on AP. Moreover, adolescents achieving at least three healthy lifestyles were more likely to be in the high-performance group for academic grades than those achieving ≤1 (math OR: 3.02–9.51, language OR: 3.51–6.76, and grade point average OR: 4.22–9.36).
Conclusions
Although individual healthy lifestyles are independently and positively associated with AP, the cumulative effect of multiple healthy lifestyles have a stronger impact.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Bradley, B. J. & Greene, A. C. Do health and education agencies in the United States share responsibility for academic achievement and health? A review of 25 years of evidence about the relationship of adolescents’ academic achievement and health behaviors. J. Adolesc. Health 52, 523–532 (2013).
Donnelly, J. E. et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med. Sci. Sports Exerc. 48, 1197–1222 (2016).
Petrides, K. V., Chamorro-Premuzic, T., Frederickson, N. & Furnham, A. Explaining individual differences in scholastic behaviour and achievement. Br. J. Educ. Psychol. 75, 239–255 (2005).
French, M. T., Homer, J. F., Popovici, I. & Robins, P. K. What you do in high school matters: high school GPA, educational attainment, and labor market earnings as a young adult. East. Econ. J. 41, 370–386 (2015).
Lê-Scherban, F., Diez Roux, A. V., Li, Y. & Morgenstern, H. Does academic achievement during childhood and adolescence benefit later health? Ann. Epidemiol. 24, 344–355 (2014).
Liang, J., Matheson, B. E., Kaye, W. H. & Boutelle, K. N. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int. J. Obes. 38, 494–506 (2014).
Horowitz-Kraus, T. & Hutton, J. S. Brain connectivity in children is increased by the time they spend reading books and decreased by the length of exposure to screen-based media. Acta Paediatr. 107, 685–693 (2017).
Carson, V. et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl. Physiol. Nutr. Metab. 41, S240–S265 (2016).
Carskadon, M. A. Sleep’s effects on cognition and learning in adolescence. Prog. Brain Res. 190, 137–143 (2011).
Dewald, J. F., Meijer, A. M., Oort, F. J., Kerkhof, G. A. & Bogels, S. M. The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: A meta-analytic review. Sleep. Med. Rev. 14, 179–189 (2010).
Kim, S. Y. et al. Dietary habits are associated with school performance in adolescents. Medicine 95, e3096 (2016).
Marques, A., Santos, D. A., Hillman, C. H. & Sardinha, L. B. How does academic achievement relate to cardiorespiratory fitness, self-reported physical activity and objectively reported physical activity: a systematic review in children and adolescents aged 6–18 years. Br. J. Sports Med. 52, 1039 (2018).
Álvarez-Bueno, C. et al. Academic achievement and physical activity: a meta-analysis. Pediatrics 140, e20171498 (2017).
Faught, E. L. et al. The combined impact of diet, physical activity, sleep and screen time on academic achievement: a prospective study of elementary school students in Nova Scotia, Canada. Int. J. Behav. Nutr. Phys. Act. 14, 29 (2017).
Ickovics, J. R. et al. Health and academic achievement: cumulative effects of health assets on standardized test scores among urban youth in the United States*. J. Sch. Heal. 84, 40–48 (2014).
Martínez-Gómez, D. et al. Gender-specific influence of health behaviors on academic performance in Spanish adolescents: the AFINOS study. Nutr. Hosp. 27, 724–730 (2012).
Beltran-Valls, M. R., et al. Regular practice of competitive sports does not impair sleep in adolescents: DADOS Study. Pediatr. Exerc. Sci. 30, 229–236 (2018).
Cole, T. J., Bellizzi, M. C., Flegal, K. M., & Dietz, W. H. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ (Clinical Research Ed.), 320, 1240–1243 (2000).
Rey-López, J. P. et al. Sedentary patterns and media availability in European adolescents: The HELENA study. Prev. Med. 51, 50–55 (2010).
Royuela Rico, A. & Macías Fernández, J. Propiedades Clinimétricas De La Versión Castellana Del Cuestionario De Pittsburg. Vigilia-Sueño 9, 81–94 (1997).
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213 (1989).
Jääskeläinen, A. et al. Associations of meal frequency and breakfast with obesity and metabolic syndrome traits in adolescents of Northern Finland Birth Cohort 1986. Nutr. Metab. Cardiovasc. Dis. 23, 1002–1009 (2013).
Léger, L. A., Mercier, D., Gadoury, C. & Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 6, 93–101 (1988).
Esliger, D. W. et al. Validation of the GENEA accelerometer. Med Sci. Sport Exerc. 43, 1085–1093 (2011).
Phillips, L., Parfitt, G. & Rowlands, A. Calibration of the GENEA accelerometer for assessment of physical activity intensity in children. J. Sci. Med. Sport. 16, 124–128 (2013).
Thurstone, L. L. & Thurstone, T. G. TEA Test de Aptitudes Escolares (Scholar Aptitudes Test). 11th edn. (Ediciones TEA, S.A., Madrid, 2004).
Tanner, J. M. & Whitehouse, R. H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 51, 170–179 (1976).
Currie, C. et al. Researching health inequalities in adolescents: The development of the Health Behaviour in School-Aged Children (HBSC) Family Affluence Scale. Soc. Sci. Med. 66, 1429e1436 (2008).
Pan, L., Sherry, B., Park, S. & Blanck, H. M. The association of obesity and school absenteeism attributed to illness or injury among adolescents in the United States, 2009. J. Adolesc. Health 52, 64–69 (2013).
Larsen, J. K., Kleinjan, M., Engels, R. C., Fisher, J. O. & Hermans, R. C. Higher weight, lower education: a longitudinal association between adolescents’ body mass index and their subsequent educational achievement level? J. Sch. Health 84, 769–776 (2014).
Carson, V. et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl. Physiol. Nutr. Metab. 41(6Suppl 3), S240–S265 (2016).
Gunnarsdottir, T., Njardvik, U., Olafsdottir, A. S., Craighead, L. W. & Bjarnason, R. Teasing and social rejection among obese children enrolling in family-based behavioural treatment: effects on psychological adjustment and academic competencies. Int. J. Obes. 36, 35–44 (2012).
Kostyrka-Allchorne, K., Cooper, N. R. & Simpson, A. The relationship between television exposure and children’s cognition and behaviour: a systematic review. Dev. Rev. 44, 19–58 (2017).
Kim, S. Y., Kim, M. S., Park, B., Kim, J. H. & Choi, H. G. The associations between internet use time and school performance among Korean adolescents differ according to the purpose of internet use. PLoS ONE 12, 1–14 (2017).
Benton, D. The influence of dietary status on the cognitive performance of children. Mol. Nutr. Food Res. 54, 457–470 (2010).
Shankar, P., Chung, R. & Frank, D. A. Association of food insecurity with children’s behavioral, emotional, and academic outcomes: a systematic review. J. Dev. Behav. Pediatr. 38, 135–150 (2017).
Chaddock, L., Pontifex, M. B., Hillman, C. H. & Kramer, A. F. A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J. Int. Neuropsychol. Soc. 17, 975–985 (2011).
Moore, R. D. et al. Aerobic fitness and intra-individual variability of neurocognition in preadolescent children. Brain Cogn. 82, 43–57 (2013).
Jackson, M. I. Understanding links between adolescent health and educational attainment. Demography 46, 671–694 (2009).
Brener, N. D., Billy, J. O. G. & Grady, W. R. Assessment of factors affecting the validity of self-reported health-risk behavior among adolescents: evidence from the scientific literature. J. Adolesc. Health 33, 436–457 (2003).
Jiménez Pavón, D. et al. Socioeconomic status influences physical fitness in European adolescents independently of body fat and physical activity: the HELENA study. Nutr. Hosp. 25, 311–316 (2010).
Acknowledgements
The DADOS Study is funded by the Spanish Ministry of Economy and Competitiveness, MINECO (DEP2013–45515-R) and by the Jaume I University of Castellon, UJI (P1·1A2015-05). This work is partly supported by a Sunny Sport research grant from the Schweppes Suntory Spain Company. D.J.P. was supported by a grant from the Spanish Ministry of Science and Innovation - MINECO (RYC-2014–16938). M.A.R. is supported by a Predoctoral Research Grant from UJI (PREDOC/2015/13).
Author contributions
M.A.R. was involved in the data collection and analysis, drafting of the initial manuscript. D.J.P. was involved in the data analysis and critical revision of the manuscript. M.R.B.V. was involved in the data collection and critical revision of the manuscript. D.M.U. was involved in the study design and data collection, manuscript preparation, and critical revision. All authors have read and approved the final manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Adelantado-Renau, M., Jiménez-Pavón, D., Beltran-Valls, M.R. et al. Independent and combined influence of healthy lifestyle factors on academic performance in adolescents: DADOS Study. Pediatr Res 85, 456–462 (2019). https://doi.org/10.1038/s41390-019-0285-z
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41390-019-0285-z
This article is cited by
-
Direct and indirect effects of physiological, psychological and cognitive variables on academic achievement in children
Pediatric Research (2024)
-
The bidirectional longitudinal association between health-related quality of life and academic performance in adolescents: DADOS study
Quality of Life Research (2023)
-
Nut consumption and academic performance among adolescents: the EHDLA study
European Journal of Nutrition (2023)
-
A lifestyle score in childhood and adolescence was positively associated with subsequently measured fluid intelligence in the DONALD cohort study
European Journal of Nutrition (2022)


