Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potential biomarkers used for risk estimation of pediatric sepsis-associated organ dysfunction and immune dysregulation

Abstract

Pediatric sepsis is a serious issue globally and is a significant cause of illness and death among infants and children. Refractory septic shock and multiple organ dysfunction syndrome are the primary causes of mortality in children with sepsis. However, there is incomplete understanding of mechanistic insight of sepsis associated organ dysfunction. Biomarkers present during the body’s response to infection-related inflammation can be used for screening, diagnosis, risk stratification/prognostication, and/or guidance in treatment decision-making. Research on biomarkers in children with sepsis can provide information about the risk of poor outcomes and sepsis-related organ dysfunction. This review focuses on clinically used biomarkers associated with immune dysregulation and organ dysfunction in pediatric sepsis, which could be useful for developing precision medicine strategies in pediatric sepsis management in the future.

Impact

  • Sepsis is a complex syndrome with diverse clinical presentations, where organ dysfunction is a key factor in morbidity and mortality.

  • Early detection of organ complications is vital in sepsis management, and potential biomarkers offer promise for precision medicine in pediatric cases.

  • Well-designed studies are needed to identify phase-specific biomarkers and improve outcomes through more precise management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential biomarkers and mechanistic link of multiple organ dysfunction and immune dysregulation in pediatric sepsis.

Similar content being viewed by others

Data availability

All requests should be submitted to the corresponding author who will review with the other investigators for consideration.

References

  1. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315, 801–810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fleischmann-Struzek, C. et al. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir. Med. 6, 223–230 (2018).

    Article  PubMed  Google Scholar 

  3. Ames, S. G., Davis, B. S., Angus, D. C., Carcillo, J. A. & Kahn, J. M. Hospital variation in risk-adjusted pediatric sepsis mortality. Pediatr. Crit. Care Med. 19, 390–396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prout, A. J. et al. Children with chronic disease bear the highest burden of pediatric sepsis. J. Pediatr. 199, 194–199.e191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cvetkovic, M. et al. Timing of death in children referred for intensive care with severe sepsis: implications for interventional studies. Pediatr. Crit. Care Med. 16, 410–417 (2015).

    Article  PubMed  Google Scholar 

  6. Morin, L. et al. Refractory septic shock in children: a European Society of Paediatric and neonatal intensive care definition. Intensive Care Med. 42, 1948–1957 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weiss, S. L. et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr. Crit. Care Med. 21, e52–e106 (2020).

    Article  PubMed  Google Scholar 

  8. Goldstein, B., Giroir, B. & Randolph, A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 6, 2–8 (2005).

    Article  PubMed  Google Scholar 

  9. Leteurtre, S. et al. Pelod-2: an update of the pediatric logistic organ dysfunction score. Crit. Care Med. 41, 1761–1773 (2013).

    Article  PubMed  Google Scholar 

  10. Matics, T. J. & Sanchez-Pinto, L. N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically Ill children. JAMA Pediatr. 171, e172352 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ward, N. S., Casserly, B. & Ayala, A. The compensatory anti-inflammatory response syndrome (Cars) in critically Ill patients. Clin. Chest Med. 29, 617–625 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mithal, L. B. et al. Mechanisms and modulation of sepsis-induced immune dysfunction in children. Pediatr. Res. 91, 447–453 (2022).

    Article  PubMed  Google Scholar 

  13. Kaplan, J. M. & Wong, H. R. Biomarker discovery and development in pediatric critical care medicine. Pediatr. Crit. Care Med. 12, 165–173 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hall, M. W. et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 37, 525–532 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Carcillo, J. A. et al. Three hypothetical inflammation pathobiology phenotypes and pediatric sepsis-induced multiple organ failure outcome. Pediatr. Crit. Care Med. 18, 513–523 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wong, H. R. et al. The pediatric sepsis biomarker risk model. Crit. Care 16, R174 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wong, H. R. et al. Prospective testing and redesign of a temporal biomarker based risk model for patients with septic shock: implications for septic shock biology. EBioMedicine 2, 2087–2093 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ono, S., Tsujimoto, H., Hiraki, S. & Aosasa, S. Mechanisms of sepsis-induced immunosuppression and immunological modification therapies for sepsis. Ann. Gastroenterol. Surg. 2, 351–358 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Delano, M. J. & Ward, P. A. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J. Clin. Invest 126, 23–31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Doughty, L., Carcillo, J. A., Kaplan, S. & Janosky, J. The compensatory anti-inflammatory cytokine interleukin 10 response in pediatric sepsis-induced multiple organ failure. Chest 113, 1625–1631 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Zhong, X., Ma, A., Zhang, Z., Liu, Y. & Liang, G. Neutrophil-to-lymphocyte ratio as a predictive marker for severe pediatric sepsis. Transl. Pediatr. 10, 657–665 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wong, H. R. et al. Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Crit. Care Med. 44, e1000–e1003 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Winkler, M. S. et al. Human leucocyte antigen (Hla-Dr) gene expression is reduced in sepsis and correlates with impaired tnfα response: a diagnostic tool for immunosuppression? PLoS One 12, e0182427 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Muszynski, J. A. et al. Early immune function and duration of organ dysfunction in critically III children with sepsis. Am. J. Respir. Crit. Care Med. 198, 361–369 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hall, M. W. et al. Innate immune function and mortality in critically ill children with influenza: a multicenter study. Crit. Care Med 41, 224–236 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Halstead, E. S., Carcillo, J. A., Schilling, B., Greiner, R. J. & Whiteside, T. L. Reduced frequency of Cd56 Dim Cd16 pos natural killer cells in pediatric systemic inflammatory response syndrome/sepsis patients. Pediatr. Res. 74, 427–432 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Muszynski, J. A. et al. Early adaptive immune suppression in children with septic shock: a prospective observational study. Crit. Care 18, R145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lindell, R. B. et al. Impaired lymphocyte responses in pediatric sepsis vary by pathogen type and are associated with features of immunometabolic dysregulation. Shock 57, 191–199 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeng, G. et al. Combination of C-reactive protein, procalcitonin, Il-6, Il-8, and Il-10 for early diagnosis of hyperinflammatory state and organ dysfunction in pediatric sepsis. J. Clin. Lab. Anal. 36, e24505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weiss, S. L. et al. Mitochondrial dysfunction is associated with an immune paralysis phenotype in pediatric sepsis. Shock 54, 285–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng, S. C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Weiss, S. L. et al. Persistent mitochondrial dysfunction linked to prolonged organ dysfunction in pediatric sepsis. Crit. Care Med. 47, 1433–1441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weiss, S. L. et al. Influence of immune cell subtypes on mitochondrial measurements in peripheral blood mononuclear cells from children with sepsis. Shock 57, 630–638 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Yan, H. P. et al. Use of plasma mitochondrial DNA levels for determining disease severity and prognosis in pediatric sepsis: a case control study. BMC Pediatr. 18, 267 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Feltes, T. F., Pignatelli, R., Kleinert, S. & Mariscalco, M. M. Quantitated left ventricular systolic mechanics in children with septic shock utilizing noninvasive wall-stress analysis. Crit. Care Med. 22, 1647–1658 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Vallabhajosyula, S. et al. Prognostic impact of isolated right ventricular dysfunction in sepsis and septic shock: an 8-year historical cohort study. Ann. Intensive Care 7, 94 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patel, M. D. et al. Cardiac dysfunction identified by strain echocardiography is associated with illness severity in pediatric sepsis. Pediatr. Crit. Care Med. 21, e192–e199 (2020).

    Article  PubMed  Google Scholar 

  38. Tonial, C. T. et al. Cardiac dysfunction and ferritin as early markers of severity in pediatric sepsis. J. Pediatr. (Rio J.) 93, 301–307 (2017).

    Article  PubMed  Google Scholar 

  39. Beardslee, M. A., Laing, J. G., Beyer, E. C. & Saffitz, J. E. Rapid turnover of connexin43 in the adult rat heart. Circ. Res. 83, 629–635 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Jain, S. K., Schuessler, R. B. & Saffitz, J. E. Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ. Res. 92, 1138–1144 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Takasu, O. et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am. J. Respir. Crit. Care Med. 187, 509–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, J., Liu, J. & Li, A. Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis. J. Zhejiang Univ. Sci. B 23, 437–450 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galley, H. F. Oxidative stress and mitochondrial dysfunction in sepsis. Br. J. Anaesth. 107, 57–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Molina, V., von Dessauer, B., Rodrigo, R. & Carvajal, C. Oxidative stress biomarkers in pediatric sepsis: a prospective observational pilot study. Redox Rep. 22, 330–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Ayar, G., Atmaca, Y. M., Alışık, M. & Erel, Ö. Effects of paraoxonase, arylesterase, ceruloplasmin, catalase, and myeloperoxidase activities on prognosis in pediatric patients with sepsis. Clin. Biochem. 50, 414–417 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Ngaosuwan, K., Houngngam, N., Limpisook, P., Plengpanich, W. & Khovidhunkit, W. Apolipoprotein a-V is not a major determinant of triglyceride levels during human sepsis. J. Crit. Care 30, 727–731 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, C. et al. Apolipoprotein AV is a novel diagnostic and prognostic predictor in pediatric patients with sepsis: a prospective pilot study in PICU. Med. Inflamm. 2020, 8052954 (2020).

    Google Scholar 

  48. Huang, C. L. et al. Serum adipocyte fatty acid-binding protein levels in patients with critical illness are associated with insulin resistance and predict mortality. Crit. Care 17, R22 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alqahtani, M. F. et al. Evaluation of new diagnostic biomarkers in pediatric sepsis: matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, mid-regional pro-atrial natriuretic peptide, and adipocyte fatty-acid binding protein. PLoS One 11, e0153645 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Scott, H. F. et al. Lactate clearance and normalization and prolonged organ dysfunction in pediatric sepsis. J. Pediatr. 170, 149–155.e141-144 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Yazdan-Ashoori, P. et al. Elevated plasma matrix metalloproteinases and their tissue inhibitors in patients with severe sepsis. J. Crit. Care 26, 556–565 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Jones, T. K. et al. Elevated plasma levels of matrix metalloproteinase-3 and tissue-inhibitor of matrix metalloproteinases-1 associate with organ dysfunction and mortality in sepsis. Shock 57, 41–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Ware, L. B. et al. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Crit. Care 17, R253 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Calfee, C. S. et al. Distinct molecular phenotypes of direct vs indirect ards in single-center and multicenter studies. Chest 147, 1539–1548 (2015).

    Article  PubMed  Google Scholar 

  55. Whitney, J. E. et al. Systemic endothelial activation is associated with early acute respiratory distress syndrome in children with extrapulmonary sepsis. Crit. Care Med. 48, 344–352 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Whitney, J. E. et al. Endothelial biomarkers are associated with indirect lung injury in sepsis-associated pediatric acute respiratory distress syndrome. Crit. Care Explor 2, e0295 (2020).

    PubMed  PubMed Central  Google Scholar 

  57. Uchida, T. et al. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am. J. Respir. Crit. Care Med. 173, 1008–1015 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yehya, N. et al. Circulating markers of endothelial and alveolar epithelial dysfunction are associated with mortality in pediatric acute respiratory distress syndrome. Intensive Care Med. 42, 1137–1145 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Wong, H. R. et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am. J. Respir. Crit. Care Med. 191, 309–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wong, H. R. et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med. 7, 34 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yehya, N., Thomas, N. J. & Wong, H. R. Evidence of endotypes in pediatric acute hypoxemic respiratory failure caused by sepsis. Pediatr. Crit. Care Med. 20, 110–112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yehya, N. & Wong, H. R. Adaptation of a biomarker-based sepsis mortality risk stratification tool for pediatric acute respiratory distress syndrome. Crit. Care Med. 46, e9–e16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kobashi, H., Toshimori, J. & Yamamoto, K. Sepsis-associated liver injury: incidence, classification and the clinical significance. Hepatol. Res. 43, 255–266 (2013).

    Article  PubMed  Google Scholar 

  64. Szabo, G., Romics, L. Jr. & Frendl, G. Liver in sepsis and systemic inflammatory response syndrome. Clin. Liver Dis. 6, 1045–1066 (2002).

    Article  PubMed  Google Scholar 

  65. Doughty, L., Clark, R. S., Kaplan, S. S., Sasser, H. & Carcillo, J. Sfas and Sfas ligand and pediatric sepsis-induced multiple organ failure syndrome. Pediatr. Res. 52, 922–927 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Nakae, H., Narita, K. & Endo, S. Soluble fas and soluble fas ligand levels in patients with acute hepatic failure. J. Crit. Care 16, 59–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Paumelle, R. et al. Hepatic Pparα is critical in the metabolic adaptation to sepsis. J. Hepatol. 70, 963–973 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wheeler, D. S. et al. Serum neutrophil gelatinase-associated lipocalin (Ngal) as a marker of acute kidney injury in critically Ill children with septic shock. Crit. Care Med. 36, 1297–1303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Afify, M. F., Maher, S. E., Ibrahim, N. M. & El-Hamied, W. M. Serum neutrophil gelatinase-associated lipocalin in infants and children with sepsis-related conditions with or without acute renal dysfunction. Clin. Med. Insights Pediatr. 10, 85–89 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stanski, N. L. et al. Persevere biomarkers predict severe acute kidney injury and renal recovery in pediatric septic shock. Am. J. Respir. Crit. Care Med. 201, 848–855 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Seely, K. A. et al. Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney injury. Am. J. Physiol. Ren. Physiol. 301, F209–F217 (2011).

    Article  CAS  Google Scholar 

  72. Odum, J. D., Wong, H. R. & Stanski, N. L. A precision medicine approach to biomarker utilization in pediatric sepsis-associated acute kidney injury. Front Pediatr. 9, 632248 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Green, J., Doughty, L., Kaplan, S. S., Sasser, H. & Carcillo, J. A. The tissue factor and plasminogen activator inhibitor type-1 response in pediatric sepsis-induced multiple organ failure. Thromb. Haemost. 87, 218–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Rautiainen, L. et al. Assessment of Adamts-13 level in hospitalized children with serious bacterial infections as a possible prognostic marker. Medicina (Kaunas) 55, 503 (2019).

    Article  PubMed  Google Scholar 

  75. Signoff, J. K., Fitzgerald, J. C., Teachey, D. T., Balamuth, F. & Weiss, S. L. Hypofibrinogenemia is associated with poor outcome and secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome in pediatric severe sepsis. Pediatr. Crit. Care Med. 19, 397–405 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ehler, J. et al. Diagnostic value of Nt-Procnp compared to Nse and S100b in cerebrospinal fluid and plasma of patients with sepsis-associated encephalopathy. Neurosci. Lett. 692, 167–173 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Skilton, M. R. & Pyne-Geithman, G. J. Adipocyte fatty acid-binding protein and ischemic stroke: another Brick in the Wall? Neurology 76, 1954–1955 (2011).

    Article  PubMed  Google Scholar 

  78. Marquardt, D. J., Knatz, N. L., Wetterau, L. A., Wewers, M. D. & Hall, M. W. Failure to recover somatotropic axis function is associated with mortality from pediatric sepsis-induced multiple organ dysfunction syndrome. Pediatr. Crit. Care Med. 11, 18–25 (2010).

    Article  PubMed  Google Scholar 

  79. Wong, H. R. et al. Pediatric sepsis biomarker risk model-ii: redefining the pediatric sepsis biomarker risk model with septic shock phenotype. Crit. Care Med. 44, 2010–2017 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong, H. R. et al. Improved risk stratification in pediatric septic shock using both protein and mRNA biomarkers. PERSEVERE-XP. Am. J. Respir. Crit. Care Med. 196, 494–501 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jacobs, L. et al. The pediatric sepsis biomarker risk model (Persevere) biomarkers predict clinical deterioration and mortality in immunocompromised children evaluated for infection. Sci. Rep. 9, 424 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Atreya, M. R. et al. Integrated persevere and endothelial biomarker risk model predicts death and persistent mods in pediatric septic shock: a secondary analysis of a prospective observational study. Crit. Care 26, 210 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to the contributions of senior author—Dr. Chulathida Chomchai, Professor of Pediatrics, Dean, Mahidol University International College. This work was supported by a Research Chair grant from the National Research Council of Thailand (NC), the Distinguished Research Professor grant from the National Research Council of Thailand (SCC), and the Chiang Mai University Center of Excellence Award (NC).

Author information

Authors and Affiliations

Authors

Contributions

Theerapon Jariyasakoolroj: conceptualization, data curation, writing - original draft, and writing - review and editing. Nipon Chattipakorn: conceptualization, supervision, data curation, writing - original draft, and writing - review and editing. Siriporn C. Chattipakorn: conceptualization, supervision, data curation, writing - original draft, and writing - review and editing.

Corresponding author

Correspondence to Nipon Chattipakorn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jariyasakoolroj, T., Chattipakorn, S.C. & Chattipakorn, N. Potential biomarkers used for risk estimation of pediatric sepsis-associated organ dysfunction and immune dysregulation. Pediatr Res 97, 2243–2257 (2025). https://doi.org/10.1038/s41390-024-03289-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03289-y

This article is cited by

Search

Quick links