Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiorespiratory interactions during the transitional period in extremely preterm infants: a narrative review

Abstract

We aimed to review the physiology and evidence behind cardiorespiratory interactions during the transitional circulation of extremely preterm infants with fragile physiology and to propose a framework for future research. Cord clamping strategies have a great impact on initial haemodynamic changes, and appropriate transition can be facilitated by establishing spontaneous ventilation before cord clamping. Mechanical ventilation modifies preterm transitional haemodynamics, with positive pressure ventilation affecting the right and left heart loading conditions. Pulmonary vascular resistances can be minimized by ventilating with optimal lung volumes at functional residual capacity, and other pulmonary vasodilator treatments such as inhaled nitric oxide can be used to improve ventilation/perfusion mismatch. Different cardiovascular drugs can be used to provide support during transition in this population, and it is important to understand both their cardiovascular and respiratory effects, in order to provide adequate support to vulnerable preterm infants and improve outcomes. Current available non-invasive bedside tools, such as near-infrared spectroscopy, targeted neonatal echocardiography, or lung ultrasound offer the opportunity to precisely monitor cardiorespiratory interactions in preterm infants. More research is needed in this field using precision medicine to strengthen the benefits and avoid the harms associated to early neonatal interventions.

Impact

  • In extremely preterm infants, haemodynamic and respiratory transitions are deeply interconnected, and their changes have a key impact in the establishment of lung aireation and postnatal circulation.

  • We describe how mechanical ventilation modifies heart loading conditions and pulmonary vascular resistances in preterm patients, and how hemodynamic interventions such as cord clamping strategies or cardiovascular drugs affect the infant respiratory status.

  • Current available non-invasive bedside tools can help monitor cardiorespiratory interactions in preterm infants. We highlight the areas of research in which precision medicine can help strengthen the benefits and avoid the harms associated to early neonatal interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cardiorespiratory interactions arising from ventilating the preterm newborn lungs before and after establishment of spontaneous ventilation.
Fig. 2: Relation between different lung volumes and pulmonary vascular resistances.
Fig. 3: Normal and abnormal cardiorespiratory transitions and pathophysiology of acute pulmonary hypertension in preterm infants.

Similar content being viewed by others

Data availability

The data from the literature searches performed during the current study are available from the corresponding author on reasonable request.

References

  1. Harrison, M. S. & Goldenberg, R. L. Global burden of prematurity. Semin. Fetal. Neonatal Med. 21, 74–79 (2016).

    Article  PubMed  Google Scholar 

  2. Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172 (2012).

    Article  PubMed  Google Scholar 

  3. Shah, P. S. et al. Actuarial Survival Based on Gestational Age in Days at Birth for Infants Born at <26 Weeks of Gestation. J. Pediatr. 225, 97–102.e3 (2020).

    Article  PubMed  Google Scholar 

  4. Stoll, B. J. et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012. JAMA 314, 1039–1051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stolz, C., et al. Bronchopulmonary dysplasia: temporal trend from 2010 to 2019 in the Brazilian Network on Neonatal Research. Arch. Dis. Child Fetal Neonatal. Ed. 109, 328–335 (2024).

  6. Spencer, B. L. & Mychaliska, G. B. Milestones for clinical translation of the artificial placenta. Semin. Fetal Neonatal Med. 27, 101408 (2022).

    Article  PubMed  Google Scholar 

  7. De Bie, F. R., Davey, M. G., Larson, A. C., Deprest, J. & Flake, A. W. Artificial placenta and womb technology: Past, current, and future challenges towards clinical translation. Prenat. Diagn. 41, 145–158 (2021).

    Article  PubMed  Google Scholar 

  8. Sehgal, A., Ruoss, J. L., Stanford, A. H., Lakshminrusimha, S. & McNamara, P. J. Hemodynamic consequences of respiratory interventions in preterm infants. J. Perinatol. 42, 1153–1160 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Relangi, D. et al. Changes in Patent Ductus Arteriosus Treatment Strategy and Respiratory Outcomes in Premature Infants. J. Pediatr. 235, 58–62 (2021).

    Article  PubMed  Google Scholar 

  10. Murthy, P. et al. Neuroprotection Care Bundle Implementation to Decrease Acute Brain Injury in Preterm Infants. Pediatr. Neurol. 110, 42–48 (2020).

    Article  PubMed  Google Scholar 

  11. Molloy E. J., et al. Neuroprotective therapies in the NICU in preterm infants: present and future (Neonatal Neurocritical Care Series). Pediatr. Res. 95, 1224–1236 (2024).

  12. Pavlek, L. R. et al. Eligibility Criteria and Representativeness of Randomized Clinical Trials That Include Infants Born Extremely Premature: A Systematic Review. J. Pediatr. 235, 63–74.e12 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Janvier, A. & Farlow, B. The ethics of neonatal research: An ethicist’s and a parents’ perspective. Semin. Fetal Neonatal Med. 20, 436–441 (2015). Dec.

    Article  PubMed  Google Scholar 

  14. Smith, A. & El-Khuffash, A. Patent Ductus Arteriosus Clinical Trials: Lessons Learned and Future Directions. Child 8, 47 (2021). Jan 15.

    Article  Google Scholar 

  15. Keszler, M. Volume-targeted ventilation: one size does not fit all. Evidence-based recommendations for successful use. Arch. Dis. Child Fetal Neonatal Ed. 104, F108–F112 (2019).

    Article  PubMed  Google Scholar 

  16. Kumar, N., Akangire, G., Sullivan, B., Fairchild, K. & Sampath, V. Continuous vital sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data to the forefront. Pediatr. Res. 87, 210–220 (2020).

    Article  PubMed  Google Scholar 

  17. Baethge, C., Goldbeck-Wood, S. & Mertens, S. SANRA-a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 4, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chakkarapani, A. A., et al. Transitional circulation and hemodynamic monitoring in newborn infants. Pediatr Res. https://doi.org/10.1038/s41390-022-02427-8 (2023).

  19. te Pas, A. B., Davis, P. G., Hooper, S. B. & Morley, C. J. From liquid to air: breathing after birth. J. Pediatr. 152, 607–611 (2008).

    Article  Google Scholar 

  20. Hooper, S. B., Polglase, G. R. & Roehr, C. C. Cardiopulmonary changes with aeration of the newborn lung. Paediatr. Respir. Rev. 16, 147–150 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Shekerdemian, L. & Bohn, D. Cardiovascular effects of mechanical ventilation. Arch. Dis. Child 80, 475–480 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bensley, J. G., Moore, L., De Matteo, R., Harding, R. & Black, M. J. Impact of preterm birth on the developing myocardium of the neonate. Pediatr. Res. 83, 880–888 (2018).

    Article  PubMed  Google Scholar 

  23. Hooper, S. B. et al. Cardiovascular transition at birth: a physiological sequence. Pediatr. Res. 77, 608–614 (2015).

    Article  PubMed  Google Scholar 

  24. Chandrasekharan, P. et al. Effect of various inspired oxygen concentrations on pulmonary and systemic hemodynamics and oxygenation during resuscitation in a transitioning preterm model. Pediatr. Res. 84, 743–750 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhatt, S., Polglase, G. R., Wallace, E. M., Te Pas, A. B. & Hooper, S. B. Ventilation before Umbilical Cord Clamping Improves the Physiological Transition at Birth. Front. Pediatr. 2, 113 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Seidler, A. L. et al. Deferred cord clamping, cord milking, and immediate cord clamping at preterm birth: a systematic review and individual participant data meta-analysis. Lancet 402, 2209–2222 (2023).

    Article  PubMed  Google Scholar 

  27. McAdams, R. M., Fay, E. & Delaney, S. Whole blood volumes associated with milking intact and cut umbilical cords in term newborns. J. Perinatol. 38, 245–250 (2018).

    Article  PubMed  Google Scholar 

  28. Katheria, A., Reister, F. & Essers, J. et al. Association of Umbilical Cord Milking vs Delayed Umbilical Cord Clamping With Death or Severe Intraventricular Hemorrhage Among Preterm Infants. JAMA 322, 1877–1886 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Katheria, A. et al. Umbilical Cord Milking Versus Delayed Cord Clamping in Infants 28 to 32 Weeks: A Randomized Trial. Pediatrics 152, e2023063113 (2023).

    Article  PubMed  Google Scholar 

  30. Raina, J. S. et al. Resuscitation with Intact Cord Versus Clamped Cord in Late Preterm and Term Neonates: A Randomized Controlled Trial. J. Pediatr. 254, 54–60.e4 (2023).

    Article  PubMed  Google Scholar 

  31. Katheria, A. C. Neonatal Resuscitation with an Intact Cord: Current and Ongoing Trials. Child. 6, 60 (2019).

    Article  Google Scholar 

  32. Subramaniam, P., Ho, J. J. & Davis, P. G. Prophylactic or very early initiation of continuous positive airway pressure (CPAP) for preterm infants. Cochrane Database Syst. Rev. 10, CD001243 (2021).

    PubMed  Google Scholar 

  33. Ramaswamy, V. V., More, K., Roehr, C. C., Bandiya, P. & Nangia, S. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: Systematic review and network meta-analysis. Pediatr. Pulmonol. 55, 2940–2963 (2020).

    Article  PubMed  Google Scholar 

  34. Moritz, B., Fritz, M., Mann, C. & Simma, B. Nasal continuous positive airway pressure (n-CPAP) does not change cardiac output in preterm infants. Am. J. Perinatol. 25, 105–109 (2008).

    Article  PubMed  Google Scholar 

  35. Kuypers, K. L. A. M. et al. Exerted force on the face mask in preterm infants at birth is associated with apnoea and bradycardia. Resuscitation 194, 110086 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Polglase, G. R. et al. Positive end-expiratory pressure differentially alters pulmonary hemodynamics and oxygenation in ventilated, very premature lambs. J. Appl Physiol. 99, 1453–1461 (2005).

    Article  PubMed  Google Scholar 

  37. Zannin, E. et al. Relationship between Mean Airways Pressure, Lung Mechanics, and Right Ventricular Output during High-Frequency Oscillatory Ventilation in Infants. J. Pediatr. 180, 110–115 (2017).

    Article  PubMed  Google Scholar 

  38. Osborn, D. A., Evans, N. & Kluckow, M. Left ventricular contractility in extremely premature infants in the first day and response to inotropes. Pediatr. Res. 61, 335–340 (2007).

    Article  PubMed  Google Scholar 

  39. Simmons, D. H., Linde, L. M., Miller, J. H. & O’Reilly, R. J. Relation between lung volume and pulmonary vascular resistance. Circ. Res. 9, 465–471 (1961).

    Article  Google Scholar 

  40. Tana, M. et al. Determination of Lung Volume and Hemodynamic Changes During High-Frequency Ventilation Recruitment in Preterm Neonates With Respiratory Distress Syndrome. Crit. Care Med. 43, 1685–1691 (2015).

    Article  PubMed  Google Scholar 

  41. Klingenberg, C., Wheeler, K. I., McCallion, N., Morley, C. J. & Davis, P. G. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst. Rev. 10, CD003666, (2017).

    PubMed  Google Scholar 

  42. Bugiera, M., Szczapa, T., Sowińska, A., Roehr, C. C. & Szymankiewicz-Bręborowicz, M. Cerebral oxygenation and circulatory parameters during pressure-controlled vs volume-targeted mechanical ventilation in extremely preterm infants. Adv. Clin. Exp. Med. 29, 1325–1329 (2020).

    Article  PubMed  Google Scholar 

  43. Cools, F., Offringa, M. & Askie, L. M. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst. Rev. 2015, CD000104 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Simma, B., Fritz, M., Fink, C. & Hammerer, I. Conventional ventilation versus high-frequency oscillation: hemodynamic effects in newborn babies. Crit. Care Med. 28, 227–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Cambonie, G. et al. Haemodynamic features during high-frequency oscillatory ventilation in preterms. Acta Paediatr. 92, 1068–1073 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Ayoub, D., Elmashad, A., Rowisha, M., Eltomey, M. & El Amrousy, D. Hemodynamic effects of high-frequency oscillatory ventilation in preterm neonates with respiratory distress syndrome. Pediatr. Pulmonol. 56, 424–432 (2021).

    Article  PubMed  Google Scholar 

  47. Elgin, T. G., Stanford, A. H. & Klein, J. M. First intention high-frequency jet ventilation for periviable infants. Curr. Opin. Pediatr. 34, 165–169 (2022).

    Article  PubMed  Google Scholar 

  48. Hibberd, J., et al. Neonatal high-frequency oscillatory ventilation: where are we now? Arch. Dis. Child Fetal Neonatal Ed. https://doi.org/10.1136/archdischild-2023-325657 (2023).

  49. Ali, S. K., Stanford, A. H., McNamara, P. J. & Gupta, S. Surfactant and neonatal hemodynamics during the postnatal transition. Semin. Fetal Neonatal Med. 28, 101498 (2023).

    Article  PubMed  Google Scholar 

  50. Katheria, A. C. & Leone, T. A. Changes in hemodynamics after rescue surfactant administration. J. Perinatol. 33, 525–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Sehgal, A. et al. Haemodynamic changes after delivery room surfactant administration to very low birth weight infants. Arch. Dis. Child Fetal Neonatal Ed. 95, F345–F351 (2010).

    Article  PubMed  Google Scholar 

  52. Vitali, F. et al. Pilot observational study on haemodynamic changes after surfactant administration in preterm newborns with respiratory distress syndrome. Ital. J. Pediatr. 40, 26, (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mielgo, V. et al. Structural and haemodynamic evaluation of less invasive surfactant administration during nasal intermittent positive pressure ventilation in surfactant-deficient newborn piglets. PLoS One 18, e0284750 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rey-Santano, C. et al. Acute and sustained effects of aerosolized vs. bolus surfactant therapy in premature lambs with respiratory distress syndrome. Pediatr. Res. 73, 639–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Hanke, K. et al. The effect of less invasive surfactant administration on cerebral oxygenation in preterm infants. Acta Paediatr. 109, 291–299 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Ichinose, F., Roberts, J. D. Jr & Zapol, W. M. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 109, 3106–3111 (2004).

    Article  PubMed  Google Scholar 

  57. Giesinger, R. E. & McNamara, P. J. Hemodynamic instability in the critically ill neonate: An approach to cardiovascular support based on disease pathophysiology. Semin. Perinatol. 40, 174–188 (2016).

    Article  PubMed  Google Scholar 

  58. Chandrasekharan, P., Lakshminrusimha, S. & Abman, S. H. When to say no to inhaled nitric oxide in neonates? Semin. Fetal Neonatal Med. 26, 101200 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Al-Ghanem, G. et al. Bronchopulmonary dysplasia and pulmonary hypertension: a meta-analysis. J. Perinatol. 37, 414–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Mirza, H., Mandell, E. W., Kinsella, J. P., McNamara, P. J. & Abman, S. H. Pulmonary Vascular Phenotypes of Prematurity: The Path to Precision Medicine. J. Pediatr. 259, 113444 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhu, F. et al. Cardiopulmonary physiological effects of diuretic therapy in preterm infants with chronic pulmonary hypertension. J. Perinatol. 43, 1288–1294 (2023).

    Article  PubMed  Google Scholar 

  62. Burns, M. L. et al. Inotropic Therapy in Newborns, A Population-Based National Registry Study. Pediatr. Crit. Care Med. 17, 948–956 (2016).

    Article  PubMed  Google Scholar 

  63. Bravo, M. C. et al. Validity of Biomarkers of Early Circulatory Impairment to Predict Outcome: A Retrospective Analysis. Front Pediatr. 7, 212 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Logan, J. W. et al. Early postnatal hypotension and developmental delay at 24 months of age among extremely low gestational age newborns. Arch. Dis. Child Fetal Neonatal Ed. 96, F321–F328 (2011).

    Article  PubMed  Google Scholar 

  65. Dempsey, E. M. & Barrington, K. J. Treating hypotension in the preterm infant: when and with what: a critical and systematic review. J. Perinatol. 27, 469–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Aldana-Aguirre, J. C., Deshpande, P., Jain, A. & Weisz, D. E. Physiology of Low Blood Pressure During the First Day After Birth Among Extremely Preterm Neonates. J. Pediatr. 236, 40–46.e3 (2021).

    Article  PubMed  Google Scholar 

  67. Keir A. K. et al. International, multicentre, observational study of fluid bolus therapy in neonates. J. Paediatr. Child Health. 55, 632–639 (2019).

    Article  PubMed  Google Scholar 

  68. Kluckow, M. & Evans, N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J. Pediatr. 129, 506–512 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Sehgal, A. & Gauli, B. Changes in respiratory mechanics in response to crystalloid infusions in extremely premature infants. Am. J. Physiol. Lung Cell Mol. Physiol. 325, L819–L825 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Osborn, D., Evans, N. & Kluckow, M. Randomized trial of dobutamine versus dopamine in preterm infants with low systemic blood flow. J. Pediatr. 140, 183–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Bravo, M. C. et al. Randomized, Placebo-Controlled Trial of Dobutamine for Low Superior Vena Cava Flow in Infants. J. Pediatr. 167, 572–8.e1-2 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Al-Salam, Z., Johnson, S., Abozaid, S., Bigam, D. & Cheung, P. Y. The hemodynamic effects of dobutamine during reoxygenation after hypoxia: a dose-response study in newborn pigs. Shock 28, 317–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Pellicer, A. et al. Pharmacokinetic study (phase I-II) of a new dobutamine formulation in preterm infants immediately after birth. Pediatr. Res. 89, 981–986 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Noori, S. & Seri, I. Neonatal blood pressure support: the use of inotropes, lusitropes, and other vasopressor agents. Clin. Perinatol. 39, 221–238 (2012).

    Article  PubMed  Google Scholar 

  75. Pellicer, A. et al. Cardiovascular support for low birth weight infants and cerebral hemodynamics: a randomized, blinded, clinical trial. Pediatrics 115, 1501–1512 (2005).

    Article  PubMed  Google Scholar 

  76. Liet, J. M. et al. Dopamine effects on pulmonary artery pressure in hypotensive preterm infants with patent ductus arteriosus. J. Pediatr. 140, 373–375 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Bouissou, A. et al. Hypotension in preterm infants with significant patent ductus arteriosus: effects of dopamine. J. Pediatr. 153, 790–794 (2008). Dec.

    Article  PubMed  Google Scholar 

  78. McNamara, P. J., Giesinger, R. E. & Lakshminrusimha, S. Dopamine and Neonatal Pulmonary Hypertension-Pressing Need for a Better Pressor? J. Pediatr. 246, 242–250 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Valverde, E. et al. Dopamine versus epinephrine for cardiovascular support in low birth weight infants: analysis of systemic effects and neonatal clinical outcomes. Pediatrics 117, e1213–e1222 (2006).

    Article  PubMed  Google Scholar 

  80. Baske, K., Saini, S. S., Dutta, S. & Sundaram, V. Epinephrine versus dopamine in neonatal septic shock: a double-blind randomized controlled trial. Eur. J. Pediatr. 177, 1335–1342 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Cheung, P. Y. & Barrington, K. J. The effects of dopamine and epinephrine on hemodynamics and oxygen metabolism in hypoxic anesthetized piglets. Crit. Care 5, 158–166 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rowcliff, K., de Waal, K., Mohamed, A. L. & Chaudhari, T. Noradrenaline in preterm infants with cardiovascular compromise. Eur. J. Pediatr. 175, 1967–1973 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Gupta, S., Agrawal, G., Thakur, S., Gupta, A. & Wazir, S. The effect of norepinephrine on clinical and hemodynamic parameters in neonates with shock: a retrospective cohort study. Eur. J. Pediatr. 181, 2379–2387 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Lu, P., Sun, Y., Gong, X., Li, Z. & Hong, W. Use of norepinephrine in preterm neonates with dopamine-resistant shock: a retrospective single-centre cross-sectional study. BMJ Paediatr. Open 7, e001804 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tourneux, P., Rakza, T., Bouissou, A., Krim, G. & Storme, L. Pulmonary circulatory effects of norepinephrine in newborn infants with persistent pulmonary hypertension. J. Pediatr. 153, 345–349 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Barrett, L. K., Singer, M. & Clapp, L. H. Vasopressin: mechanisms of action on the vasculature in health and in septic shock. Crit. Care Med. 35, 33–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Rios, D. R. & Kaiser, J. R. Vasopressin versus dopamine for treatment of hypotension in extremely low birth weight infants: a randomized, blinded pilot study. J. Pediatr. 166, 850–855 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mohamed, A., Nasef, N., Shah, V. & McNamara, P. J. Vasopressin as a rescue therapy for refractory pulmonary hypertension in neonates: case series. Pediatr. Crit. Care Med. 15, 148–154 (2014).

    Article  PubMed  Google Scholar 

  89. McNamara, P. J., Shivananda, S. P., Sahni, M., Freeman, D. & Taddio, A. Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn and suboptimal response to inhaled nitric oxide. Pediatr. Crit. Care Med. 14, 74–84 (2013).

    Article  PubMed  Google Scholar 

  90. Khazin, V. et al. Milrinone and nitric oxide: combined effect on pulmonary artery pressures after cardiopulmonary bypass in children. J. Cardiothorac. Vasc. Anesth. 18, 156–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Matsushita, F. Y., et al. Reassessing the role of milrinone in the treatment of heart failure and pulmonary hypertension in neonates and children: a systematic review and meta-analysis. Eur. J. Pediatr. 183, 543–555 (2024).

  92. James, A. T. et al. Treatment of premature infants with pulmonary hypertension and right ventricular dysfunction with milrinone: a case series. J. Perinatol. 35, 268–273 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. McNamara, P. J., Abman, S., Levy, P. T. Reengagement with Physiology in Neonatal Heart and Lung Care: A Priority for Training and Practice. J. Pediatr. 268, 113947 (2024).

  94. Bravo, M. C., Jiménez, R., Parrado-Hernández, E., Fernández, J. J., Pellicer, A. Predicting the effectiveness of drugs used for treating cardiovascular conditions in newborn infants. Pediatr. Res. 95, 1124–1131 (2024).

  95. Dempsey, E. M. What Should We Do about Low Blood Pressure in Preterm Infants. Neonatology 111, 402–407 (2017).

    Article  PubMed  Google Scholar 

  96. Mullaly, R., El-Khuffash, A. F. Haemodynamic assessment and management of hypotension in the preterm. Arch. Dis. Child Fetal Neonatal Ed. 109, 120–127 (2024).

  97. Vesoulis, Z., Tims, A., Lodhi, H., Lalos, N. & Whitehead, H. Racial discrepancy in pulse oximeter accuracy in preterm infants. J. Perinatol. 42, 79–85 (2022).

    Article  PubMed  Google Scholar 

  98. Pellicer, A. & Bravo, M. C. Near-infrared spectroscopy: a methodology-focused review. Semin. Fetal Neonatal Med. 16, 42–49 (2011).

    Article  PubMed  Google Scholar 

  99. Martini, S. et al. Cardiovascular and cerebrovascular responses to cardio-respiratory events in preterm infants during the transitional period. J. Physiol. 598, 4107–4119 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Pellicer, A. et al. The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants. Neonatology 104, 171–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Hyttel-Sorensen, S. et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ 350, g7635 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hansen, M. L. et al. Cerebral Oximetry Monitoring in Extremely Preterm Infants. N. Engl. J. Med. 388, 1501–1511 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Pichler, G. et al. Cerebral regional tissue Oxygen Saturation to Guide Oxygen Delivery in preterm neonates during immediate transition after birth (COSGOD III): multicentre randomised phase 3 clinical trial. BMJ 380, e072313 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  104. McNamara, P. J. et al. Guidelines and Recommendations for Targeted Neonatal Echocardiography and Cardiac Point-of-Care Ultrasound in the Neonatal Intensive Care Unit: An Update from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 37, 171–215 (2024).

    Article  PubMed  Google Scholar 

  105. Bischoff, A. R. et al. Targeted Neonatal Echocardiography in Patients With Hemodynamic Instability. Pediatrics 150, e2022056415I (2022).

    Article  Google Scholar 

  106. Giesinger, R. E., Hobson, A. A., Bischoff, A. R., Klein, J. M. & McNamara, P. J. Impact of early screening echocardiography and targeted PDA treatment on neonatal outcomes in “22-23” week and “24-26” infants. Semin Perinatol. 47, 151721 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Sankaran, D. et al. Non-invasive carbon dioxide monitoring in neonates: methods, benefits, and pitfalls. J. Perinatol. 41, 2580–2589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jain, D. & D’Ugard, C. et al. Use of a Mechanical Ventilator with Respiratory Function Monitoring Provides More Consistent Ventilation during Simulated Neonatal Resuscitation. Neonatology 117, 151–158 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Raimondi, F., Yousef, N., Migliaro, F., Capasso, L. & De Luca, D. Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr. Res. 90, 524–531 (2021).

    Article  PubMed  Google Scholar 

  110. Raimondi, F., et al. External Validation of a Multivariate Model for Targeted Surfactant Replacement. Neonatology 121, 17–24 (2024).

  111. Mohsen, N., Solis-Garcia, G., Jasani, B., Nasef, N. & Mohamed, A. Accuracy of lung ultrasound in predicting extubation failure in neonates: A systematic review and meta-analysis. Pediatr. Pulmonol. 58, 2846–2856 (2023).

    Article  PubMed  Google Scholar 

  112. Rodriguez-Fanjul, J. et al. Lung ultrasound to evaluate lung recruitment in neonates with respiratory distress (RELUS study). Pediatr. Pulmonol. 57, 2502–2510 (2022).

    Article  PubMed  Google Scholar 

  113. Buonsenso, D. et al. Lung ultrasound to detect cardiopulmonary interactions in acutely ill children. Pediatr. Pulmonol. 57, 483–497 (2022).

    Article  PubMed  Google Scholar 

  114. Onland, W. et al. Precision Medicine in Neonates: Future Perspectives for the Lung. Front. Pediatr. 8, 586061 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This article did not receive any specific financial assistance. G.S.G. is funded by the program Rio Hortega, co-funded by the Spanish Ministry of Science and the European Union.

Author information

Authors and Affiliations

Authors

Contributions

Gonzalo Solís García, María Carmen Bravo and Adelina Pellicer conceptualized and designed the project. Gonzalo Solís García performed the literature search and wrote the initial draft of the manuscript. María Carmen Bravo and Adelina Pellicer critically reviewed and edited the original manuscript. All three authors have approved the final version of the article.

Corresponding author

Correspondence to Gonzalo Solís-García.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solís-García, G., Bravo, M.C. & Pellicer, A. Cardiorespiratory interactions during the transitional period in extremely preterm infants: a narrative review. Pediatr Res 97, 871–879 (2025). https://doi.org/10.1038/s41390-024-03451-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03451-6

This article is cited by

Search

Quick links