Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neonatal multimorbidity and the phenotype of premature aging in preterm infants

Abstract

Multimorbidity is the co-occurrence of multiple chronic health problems, associated with aging, frailty, and poor functioning. Children born preterm experience more multimorbid conditions in early life compared to term-born peers. Though neonatal multimorbidity is linked to poor health-related quality of life, functional outcomes, and peer group participation, gaps in our theoretical understanding and conceptualization remain. Drawing from life course epidemiology and the Developmental Origins of Heath and Disease models, we offer a framework that neonatal multimorbidity reflects maturational vulnerability posed by preterm birth. The impact of such vulnerability on health and development may be further amplified by adverse exposures and interventions within the environment of the neonatal intensive care unit. This can be exacerbated by disadvantaged home or community contexts after discharge. Uncovering the physiologic and social antecedents of multiple morbid conditions in the neonatal period and their biological underpinnings will allow for more accurate risk-prediction, counseling, and care planning for preterm infants and their families. According to this framework, the maturational vulnerability to multimorbidity imparted by preterm birth and its negative effects on health and development are not predetermined or static. Elucidating pathways of early biologic and physical aging will lead to improvements in care and outcomes.

Impact

  • Multimorbidity is associated with significant frailty and dysfunction among older adults and is indicative of early physiologic aging.

  • Preterm infants commonly experience multimorbidities in the newborn period, an underrecognized threat to long-term health and development.

  • We offer a novel framework incorporating multimorbidity, early cellular aging, and life course health development to innovate risk-prediction, care-planning, and therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. van den Akker, M., Buntinx, F. & Knottnerus, J. A. Comorbidity or multimorbidity: what’s in a name ? A review of literature. Eur. J. Gen. Pract. 2, 65–70 (1996).

    Article  Google Scholar 

  2. Boyd, C. M. & Fortin, M. Future of multimorbidity research: how should understanding of multimorbidity inform health system design? Public Health Rev. 32, 451–474 (2010).

    Article  Google Scholar 

  3. Jacob, M. et al. Burden and patterns of multi-morbidity: impact on disablement in older adults. Am. J. Phys. Med. Rehabil. 99, 359–365 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aubert, C. E. et al. Patterns of multimorbidity associated with 30-day readmission: a multinational study. BMC Public Health 19, 738 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Soley-Bori, M. et al. Impact of multimorbidity on healthcare costs and utilisation: a systematic review of the Uk literature. Br. J. Gen. Pract. 71, e39–e46 (2021).

    Article  PubMed  Google Scholar 

  6. Picco, L. et al. Economic burden of multimorbidity among older adults: impact on healthcare and societal costs. BMC Health Serv. Res. 16, 173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Makovski, T. T., Schmitz, S., Zeegers, M. P., Stranges, S. & van den Akker, M. Multimorbidity and quality of life: systematic literature review and meta-analysis. Ageing Res. Rev. 53, 100903 (2019).

    Article  PubMed  Google Scholar 

  8. Harrison, C. et al. Comorbidity versus multimorbidity: why it matters. J. Comorb 11, 2633556521993993 (2021).

    Google Scholar 

  9. CM, B. & M, F. Future of multimorbidity research. Public Health Rev. 32, 451–474 (2010).

  10. Ferro, M. A. et al. Multimorbidity in children and youth across the life-course (my life): protocol of a canadian prospective study. BMJ Open 9, e034544 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. O’Loughlin, R., Hiscock, H., Pan, T., Devlin, N. & Dalziel, K. The relationship between physical and mental health multimorbidity and children’s health-related quality of life. Qual. Life Res. 31, 2119–2131 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Romano, I., Buchan, C., Baiocco-Romano, L. & Ferro, M. A. Physical-mental multimorbidity in children and youth: a scoping review. BMJ Open 11, e043124 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. McCormick, M. C., Litt, J. S., Smith, V. C. & Zupancic, J. A. Prematurity: an overview and public health implications. Annu. Rev. Public Health 32, 367–379 (2011).

    Article  PubMed  Google Scholar 

  14. McCormick, M. C. & Litt, J. S. The outcomes of very preterm infants: is it time to ask different questions? Pediatrics 139, e20161694 (2017).

  15. Anderson, P. J. & Doyle, L. W. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin. Perinatol. 30, 227–232 (2006).

    Article  PubMed  Google Scholar 

  16. Bazacliu, C. & Neu, J. Necrotizing enterocolitis: long term complications. Curr. Pediatr. Rev. 15, 115–124 (2019).

    Article  PubMed  Google Scholar 

  17. Choi, E. K., Shin, S. H., Kim, E. K. & Kim, H. S. Developmental outcomes of preterm infants with bronchopulmonary dysplasia-associated pulmonary hypertension at 18-24 months of corrected age. BMC Pediatr. 19, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hurst, J. R. et al. Respiratory and cardiovascular outcomes in survivors of extremely preterm birth at 19 years. Am. J. Respir. Crit. Care Med. 202, 422–432 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Johnson, S. & Marlow, N. Early and long-term outcome of infants born extremely preterm. Arch. Dis. Child 102, 97–102 (2017).

    Article  PubMed  Google Scholar 

  20. Patra, K. & Greene, M. M. Health care utilization after nicu discharge and neurodevelopmental outcome in the first 2 years of life in preterm infants. Am. J. Perinatol. 35, 441–447 (2018).

    Article  PubMed  Google Scholar 

  21. Klitkou, S. T., Iversen, T., Stensvold, H. J. & Ronnestad, A. Use of hospital-based health care services among children aged 1 through 9 years who were born very preterm - a population-based study. BMC Health Serv. Res. 17, 571 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hennelly, M., Greenberg, R. G. & Aleem, S. An update on the prevention and management of bronchopulmonary dysplasia. Pediatr. Health Med. Ther. 12, 405–419 (2021).

    Article  Google Scholar 

  23. Higgins, R. D. Oxygen saturation and retinopathy of prematurity. Clin. Perinatol. 46, 593–599 (2019).

    Article  PubMed  Google Scholar 

  24. Stensvold, H. J. et al. Neonatal morbidity and 1-year survival of extremely preterm infants. Pediatrics 139, e20161821 (2017).

  25. Kaempf, J., Morris, M., Steffen, E., Wang, L. & Dunn, M. Continued improvement in morbidity reduction in extremely premature infants. Arch. Dis. Child Fetal Neonatal Ed. 106, 265–270 (2021).

    Article  PubMed  Google Scholar 

  26. Crump, C., Winkleby, M. A., Sundquist, J. & Sundquist, K. Prevalence of survival without major comorbidities among adults born prematurely. JAMA 322, 1580–1588 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fabbri, E. et al. Aging and the burden of multimorbidity: associations with inflammatory and anabolic hormonal biomarkers. J. Gerontol. A Biol. Sci. Med. Sci. 70, 63–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Dash, P., Mohapatra, S. R. & Pati, S. Metabolomics of multimorbidity: could it be the Quo Vadis? Front. Mol. Biosci. 9, 848971 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tchkonia, T., Palmer, A. K. & Kirkland, J. L. New horizons: novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms. J. Clin. Endocrinol. Metab. 106, e1481–e1487 (2021).

    Article  PubMed  Google Scholar 

  30. Ferrucci, L. et al. Measuring biological aging in humans: a quest. Aging Cell 19, e13080 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Bousquet, A., Sanderson, K., O’Shea, T. M. & Fry, R. C. Accelerated aging and the life course of individuals born preterm. Children 10, 1683 (2023).

  32. Blackburn, E. H., Epel, E. S. & Lin, J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193–1198 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Entringer, S. et al. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am. J. Obstet. Gynecol. 208, 134.e131–134.e137 (2013).

    Article  Google Scholar 

  34. Factor-Litvak, P. et al. Leukocyte telomere length in newborns: implications for the role of telomeres in human disease. Pediatrics 137, e20153927 (2016).

  35. Shammas, M. A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 14, 28–34 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vasu, V. et al. Preterm infants have significantly longer telomeres than their term born counterparts. PLoS ONE 12, e0180082 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Niu, Z., Li, K., Xie, C. & Wen, X. Adverse birth outcomes and birth telomere length: a systematic review and meta-analysis. J. Pediatr. 215, 64–74.e6 (2019).

  38. Smeets, C. C., Codd, V., Samani, N. J. & Hokken-Koelega, A. C. Leukocyte telomere length in young adults born preterm: support for accelerated biological ageing. PLoS ONE 10, e0143951 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Parkinson, J. R. C. et al. Clinical and molecular evidence of accelerated ageing following very preterm birth. Pediatr. Res. 87, 1005–1010 (2019).

  40. Provenzi, L. et al. Telomere length and salivary cortisol stress reactivity in very preterm infants. Early Hum. Dev. 129, 1–4 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Belfort, M. B. et al. Telomere length shortening in hospitalized preterm infants: a pilot study. PLoS ONE 16, e0243468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hadchouel, A. et al. Salivary telomere length and lung function in adolescents born very preterm: a prospective multicenter study. PLoS ONE 10, e0136123 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shirvani-Farsani, Z., Maloum, Z., Bagheri-Hosseinabadi, Z., Vilor-Tejedor, N. & Sadeghi, I. DNA methylation signature as a biomarker of major neuropsychiatric disorders. J. Psychiatr. Res. 141, 34–49 (2021).

    Article  PubMed  Google Scholar 

  44. Jin, B., Li, Y. & Robertson, K. D. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sparrow, S. et al. Epigenomic profiling of preterm infants reveals DNA methylation differences at sites associated with neural function. Transl. Psychiatry 6, e716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wheater, E. N. W. et al. DNA methylation in relation to gestational age and brain dysmaturation in preterm infants. Brain Commun. 4, fcac056 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tan, Q. et al. Epigenetic signature of preterm birth in adult twins. Clin. Epigenetics 10, 87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Everson, T. M. et al. Serious neonatal morbidities are associated with differences in DNA methylation among very preterm infants. Clin. Epigenetics 12, 151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Massaro, A. N. et al. Whole genome methylation and transcriptome analyses to identify risk for cerebral palsy (Cp) in extremely low gestational age neonates (Elgan). Sci. Rep. 11, 5305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reese, S. E. et al. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J. Allergy Clin. Immunol. 143, 2062–2074 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. den Dekker, H. T. et al. Newborn DNA-methylation, childhood lung function, and the risks of asthma and copd across the life course. Eur. Respir. J. 53, 1801795 (2019).

  52. Neumann, A. et al. Association between DNA methylation and Adhd symptoms from birth to school age: a prospective meta-analysis. Transl. Psychiatry 10, 398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Jain, P. et al. The association of epigenetic age acceleration and multimorbidity at age 90 in the women’s health initiative. J. Gerontol. A Biol. Sci. Med. Sci. 78, 2274–2281 (2022).

  56. Mathewson, K. J. et al. Cumulative risks predict epigenetic age in adult survivors of extremely low birth weight. Dev. Psychobiol. 63, e22222 (2021).

    Article  PubMed  Google Scholar 

  57. Paniagua, U. et al. Epigenetic age acceleration, neonatal morbidities, and neurobehavioral profiles in infants born very preterm. Epigenetics 18, 2280738 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gomaa, N. et al. Association of pediatric buccal epigenetic age acceleration with adverse neonatal brain growth and neurodevelopmental outcomes among children born very preterm with a neonatal infection. JAMA Netw. Open 5, e2239796 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. McGowan, E. C. & Vohr, B. R. Neurodevelopmental follow-up of preterm infants: what is new? Pediatr. Clin. North Am. 66, 509–523 (2019).

    Article  PubMed  Google Scholar 

  60. Pascal, A. et al. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review. Dev. Med. Child Neurol. 60, 342–355 (2018).

    Article  PubMed  Google Scholar 

  61. Loe, I. M., Heller, N. A. & Chatav, M. Behavior problems and executive function impairments in preterm compared to full term preschoolers. Early Hum. Dev. 130, 87–95 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Montagna, A. et al. Adhd symptoms and their neurodevelopmental correlates in children born very preterm. PLoS ONE 15, e0224343 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taylor, H. G. Neurodevelopmental origins of social competence in very preterm children. Semin. Fetal Neonatal Med. 25, 101108 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hollanders, J. J. et al. Long-term neurodevelopmental and functional outcomes of infants born very preterm and/or with a very low birth weight. Neonatology 115, 310–319 (2019).

    Article  PubMed  Google Scholar 

  65. Litt, J. S., Glymour, M. M., Hauser-Cram, P., Hehir, T. & McCormick, M. C. Early intervention services improve school-age functional outcome among neonatal intensive care unit graduates. Acad. Pediatr. 18, 468–474 (2018).

    Article  PubMed  Google Scholar 

  66. Lakshmanan, A. et al. The financial burden experienced by families of preterm infants after Nicu discharge. J. Perinatol. 42, 223–230 (2022).

    Article  PubMed  Google Scholar 

  67. Staneva, A., Bogossian, F., Pritchard, M. & Wittkowski, A. The effects of maternal depression, anxiety, and perceived stress during pregnancy on preterm birth: a systematic review. Women Birth 28, 179–193 (2015).

    Article  PubMed  Google Scholar 

  68. Luu, T. M., Rehman Mian, M. O. & Nuyt, A. M. Long-term impact of preterm birth: neurodevelopmental and physical health outcomes. Clin. Perinatol. 44, 305–314 (2017).

    Article  PubMed  Google Scholar 

  69. Homan, T. D. & Nayak, R. P. Short- and long-term complications of bronchopulmonary dysplasia. Respir. Care 66, 1618–1629 (2021).

    Article  PubMed  Google Scholar 

  70. DeMauro, S. B. The impact of bronchopulmonary dysplasia on childhood outcomes. Clin. Perinatol. 45, 439–452 (2018).

    Article  PubMed  Google Scholar 

  71. Gibson, A. M. et al. Lung function in adult survivors of very low birth weight, with and without bronchopulmonary dysplasia. Pediatr. Pulmonol. 50, 987–994 (2015).

    Article  PubMed  Google Scholar 

  72. Cheong, J. L. Y. & Doyle, L. W. An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Semin Perinatol. 42, 478–484 (2018).

    Article  PubMed  Google Scholar 

  73. Litt, J. S., Johnson, S., Marlow, N. & Tiemeier, H. Impaired pulmonary function mediates inattention in young adults born extremely preterm. Acta Paediatr. 112, 254–260 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Yazici, A., Buyuktiryaki, M., Simsek, G. K., Kanmaz Kutman, H. G. & Canpolat, F. E. Factors associated with neurodevelopmental impairment in preterm infants with bronchopulmonary dysplasia. Eur. Rev. Med. Pharm. Sci. 26, 1579–1585 (2022).

    CAS  Google Scholar 

  75. Chen, Y. et al. Risk factors and outcomes of pulmonary hypertension in infants with bronchopulmonary dysplasia: a meta-analysis. Front. Pediatr. 9, 695610 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Adams-Chapman, I. & Stoll, B. J. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr. Opin. Infect. Dis. 19, 290–297 (2006).

    Article  PubMed  Google Scholar 

  77. Rand, K. M., Austin, N. C., Inder, T. E., Bora, S. & Woodward, L. J. Neonatal infection and later neurodevelopmental risk in the very preterm infant. J. Pediatr. 170, 97–104 (2016).

    Article  PubMed  Google Scholar 

  78. Heikkila, K. et al. Preterm birth and the risk of chronic disease multimorbidity in adolescence and early adulthood: a population-based cohort study. PLoS ONE 16, e0261952 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sieber, S., Roquet, A., Lampraki, C. & Jopp, D. S. Multimorbidity and quality of life: the mediating role of Adl, Iadl, loneliness, and depressive symptoms. Innov. Aging 7, igad047 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vetrano, D. L. et al. Frailty and multimorbidity: a systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 74, 659–666 (2019).

    Article  PubMed  Google Scholar 

  81. Barnes, P. J. Mechanisms of development of multimorbidity in the elderly. Eur. Respir. J. 45, 790–806 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Rogers, L. K. & Slaughter, J. L. Editorial: developmental origins of health and disease: impact of preterm birth. Front. Pediatr. 10, 1120208 (2022).

    Article  PubMed  Google Scholar 

  83. Nobile, S., Di Sipio Morgia, C. & Vento, G. Perinatal origins of adult disease and opportunities for health promotion: a narrative review. J. Pers. Med. 12, 157 (2022).

  84. Kuh, D., Ben-Shlomo, Y., Lynch, J., Hallqvist, J. & Power, C. Life course epidemiology. J. Epidemiol. Community Health 57, 778–783 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Linsell, L., Malouf, R., Morris, J., Kurinczuk, J. J. & Marlow, N. Prognostic factors for poor cognitive development in children born very preterm or with very low birth weight: a systematic review. JAMA Pediatr. 169, 1162–1172 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Farooqi, A., Hagglof, B., Sedin, G. & Serenius, F. Impact at age 11 years of major neonatal morbidities in children born extremely preterm. Pediatrics 127, e1247–e1257 (2011).

    Article  PubMed  Google Scholar 

  87. Koo, K. Y. et al. Effect of severe neonatal morbidities on long term outcome in extremely low birthweight infants. Korean J. Pediatr. 53, 694–700 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schmidt, B. et al. Prediction of late death or disability at age 5 years using a count of 3 neonatal morbidities in very low birth weight infants. J. Pediatr. 167, 982–986.e982 (2015).

    Article  PubMed  Google Scholar 

  89. Katz, T. A. et al. Severity of bronchopulmonary dysplasia and neurodevelopmental outcome at 2 and 5 years corrected age. J. Pediatr. 243, 40–46.e42 (2022).

    Article  PubMed  Google Scholar 

  90. Gallini, F. et al. Neurodevelopmental outcomes in very preterm infants: the role of severity of bronchopulmonary dysplasia. Early Hum. Dev. 152, 105275 (2021).

    Article  PubMed  Google Scholar 

  91. Annesi, C. A., Levin, J. C., Litt, J. S., Sheils, C. A. & Hayden, L. P. Long-term respiratory and developmental outcomes in children with bronchopulmonary dysplasia and history of tracheostomy. J. Perinatol. 41, 2645–2650 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gotardo, J. W. et al. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: a systematic review and meta-analysis. PLoS ONE 14, e0223427 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guillot, M. et al. Mechanical ventilation duration, brainstem development, and neurodevelopment in children born preterm: a prospective cohort study. J. Pediatr. 226, 87–95.e83 (2020).

    Article  PubMed  Google Scholar 

  94. Vliegenthart, R. J. S., van Kaam, A. H., Aarnoudse-Moens, C. S. H., van Wassenaer, A. G. & Onland, W. Duration of mechanical ventilation and neurodevelopment in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 104, F631–F635 (2019).

    Article  PubMed  Google Scholar 

  95. Asztalos, E. V. et al. Neonatal factors associated with a good neurodevelopmental outcome in very preterm infants. Am. J. Perinatol. 34, 388–396 (2017).

    PubMed  Google Scholar 

  96. Belfort, M. B. et al. Weight status in the first 2 years of life and neurodevelopmental impairment in extremely low gestational age newborns. J. Pediatr. 168, 30–35.e32 (2016).

    Article  PubMed  Google Scholar 

  97. Ehrenkranz, R. A. et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 117, 1253–1261 (2006).

    Article  PubMed  Google Scholar 

  98. Cordova, E. G. et al. Association of poor postnatal growth with neurodevelopmental impairment in infancy and childhood: comparing the fetus and the healthy preterm infant references. J. Pediatr. 225, 37–43.e35 (2020).

    Article  PubMed  Google Scholar 

  99. Raghuram, K. et al. Head growth trajectory and neurodevelopmental outcomes in preterm neonates. Pediatrics 140, e20170216 (2017).

  100. Villar, J. et al. Fetal cranial growth trajectories are associated with growth and neurodevelopment at 2 years of age: interbio-21st fetal study. Nat. Med. 27, 647–652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Crilly, C. J., Haneuse, S. & Litt, J. S. Predicting the outcomes of preterm neonates beyond the neonatal intensive care unit: what are we missing? Pediatr. Res. 89, 426–445 (2021).

    Article  PubMed  Google Scholar 

  102. Leviton, A. et al. The clustering of disorders in infants born before the 28th week of gestation. Acta Paediatr. 99, 1795–1800 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Willis, K. A. & Weems, M. F. Hemodynamically significant patent ductus arteriosus and the development of bronchopulmonary dysplasia. Congenit. Heart Dis. 14, 27–32 (2019).

    Article  PubMed  Google Scholar 

  104. Schena, F. et al. Association between hemodynamically significant patent ductus arteriosus and bronchopulmonary dysplasia. J. Pediatr. 166, 1488–1492 (2015).

    Article  PubMed  Google Scholar 

  105. Kordasz, M. et al. Risk factors for mortality in preterm infants with necrotizing enterocolitis: a retrospective multicenter analysis. Eur. J. Pediatr. 181, 933–939 (2021).

  106. Ballabh, P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr. Res. 67, 1–8 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Juul, S. E. et al. Predicting 2-year neurodevelopmental outcomes in extremely preterm infants using graphical network and machine learning approaches. eClinicalMedicine 56, 101782 (2023).

    Article  PubMed  Google Scholar 

  108. Organization, W. H. International Classification of Functioning, Disability, and Health: Children & Youth Version: Icf-Cy (World Health Organization, 2007).

  109. Rosenbaum, P. & Gorter, J. W. The ‘F-Words’ in childhood disability: i swear this is how we should think! Child Care Health Dev. 38, 457–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Saigal, S. & Tyson, J. Measurement of quality of life of survivors of neonatal intensive care: critique and implications. Semin. Perinatol. 32, 59–66 (2008).

    Article  PubMed  Google Scholar 

  111. Janvier, A., Farlow, B., Baardsnes, J., Pearce, R. & Barrington, K. J. Measuring and communicating meaningful outcomes in neonatology: a family perspective. Semin. Perinatol. 40, 571–577 (2016).

    Article  PubMed  Google Scholar 

  112. Strimbu, K. & Tavel, J. A. What are biomarkers? Curr. Opin. HIV AIDS 5, 463–466 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wessman, T., Tofik, R., Ruge, T. & Melander, O. Associations between biomarkers of multimorbidity burden and mortality risk among patients with acute dyspnea. Intern. Emerg. Med. 17, 559–567 (2022).

    Article  PubMed  Google Scholar 

  114. Spyroglou, I. I., Spock, G., Rigas, A. G. & Paraskakis, E. N. Evaluation of Bayesian classifiers in asthma exacerbation prediction after medication discontinuation. BMC Res. Notes 11, 522 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kho, A. T. et al. Circulating micrornas and prediction of asthma exacerbation in childhood asthma. Respir. Res. 19, 128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fleming, L. Asthma exacerbation prediction: recent insights. Curr. Opin. Allergy Clin. Immunol. 18, 117–123 (2018).

    Article  PubMed  Google Scholar 

  117. Jirak, P. et al. Analysis of novel cardiovascular biomarkers in patients with peripheral artery disease. Minerva Med. 109, 443–450 (2018).

    Article  PubMed  Google Scholar 

  118. Lyngbakken, M. N., Myhre, P. L., Rosjo, H. & Omland, T. Novel biomarkers of cardiovascular disease: applications in clinical practice. Crit. Rev. Clin. Lab Sci. 56, 33–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Retnakaran, R. Novel biomarkers for predicting cardiovascular disease in patients with diabetes. Can. J. Cardiol. 34, 624–631 (2018).

    PubMed  Google Scholar 

  120. Khanam, S. S. et al. Validation of the Maggic (Meta-Analysis Global Group in Chronic Heart Failure) Heart failure risk score and the effect of adding natriuretic peptide for predicting mortality after discharge in hospitalized patients with heart failure. PLoS ONE 13, e0206380 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Greenberg, J. H. et al. Urine biomarkers of kidney tubule health, injury, and inflammation are associated with progression of Ckd in children. J. Am. Soc. Nephrol. 32, 2664–2677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Parker, D. M. et al. Novel biomarkers improve prediction of 365-day readmission after pediatric congenital heart surgery. Ann. Thorac. Surg. 109, 164–170 (2020).

    Article  PubMed  Google Scholar 

  123. Hayes, D. F. Biomarker validation and testing. Mol. Oncol. 9, 960–966 (2015).

    Article  PubMed  Google Scholar 

  124. Purkayastha, K. et al. The issues and challenges with cancer biomarkers. J. Cancer Res. Ther. 19, S20–S35 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Tarekegn, A., Ricceri, F., Costa, G., Ferracin, E. & Giacobini, M. Predictive modeling for frailty conditions in elderly people: machine learning approaches. JMIR Med. Inf. 8, e16678 (2020).

    Article  Google Scholar 

  126. Keil, A. P. et al. A quantile-based G-computation approach to addressing the effects of exposure mixtures. Environ. Health Perspect. 128, 47004 (2020).

    Article  PubMed  Google Scholar 

  127. Bobb, J. F. et al. Bayesian Kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16, 493–508 (2015).

    Article  PubMed  Google Scholar 

  128. Lorch, S. A. & Enlow, E. The role of social determinants in explaining racial/ethnic disparities in perinatal outcomes. Pediatr. Res. 79, 141–147 (2016).

    Article  PubMed  Google Scholar 

  129. Morrow, L. A. et al. Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants. Am. J. Respir. Crit. Care Med. 196, 364–374 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lewis, T. R. et al. Association of racial disparities with in-hospital outcomes in severe bronchopulmonary dysplasia. JAMA Pediatr. 176, 852–859 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nelin, T. D. et al. Associations of neighborhood social vulnerability with emergency department visits and readmissions among infants with bronchopulmonary dysplasia. J. Perinatol. 43, 1308–1313 (2023).

  132. Shankaran, S. et al. Maternal race, demography, and health care disparities impact risk for intraventricular hemorrhage in preterm neonates. J. Pediatr. 164, 1005–1011.e1003 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Murosko, D., Passerella, M. & Lorch, S. Racial segregation and intraventricular hemorrhage in preterm infants. Pediatrics 145, e20191508 (2020).

  134. Jammeh, M. L. et al. Racial/ethnic differences in necrotizing enterocolitis incidence and outcomes in premature very low birth weight infants. J. Perinatol. 38, 1386–1390 (2018).

    Article  PubMed  Google Scholar 

  135. Elgendy, M. M. et al. Trends and racial disparities for acute kidney injury in premature infants: The Us National Database. Pediatr. Nephrol. 36, 2789–2795 (2021).

    Article  PubMed  Google Scholar 

  136. Ravi, D. & Profit, J. Disparities in neonatal intensive care: causes, consequences and charting the path forward. Semin. Perinatol. 45, 151406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Howell, E. A. et al. Differences in morbidity and mortality rates in black, white, and hispanic very preterm infants among New York City Hospitals. JAMA Pediatr. 172, 269–277 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Beck, A. F. et al. The color of health: how racism, segregation, and inequality affect the health and well-being of preterm infants and their families. Pediatr. Res. 87, 227–234 (2020).

    Article  PubMed  Google Scholar 

  139. Brumbaugh, J. E. et al. Early-life outcomes in relation to social determinants of health for children born extremely preterm. J. Pediatr. 259, 113443 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Spittle, A. J., Thompson, D. K., Olsen, J. E., Kwong, A. & Treyvaud, K. Predictors of long-term neurodevelopmental outcomes of children born extremely preterm. Semin. Perinatol. 45, 151482 (2021).

    Article  PubMed  Google Scholar 

  141. Beauregard, J. L., Drews-Botsch, C., Sales, J. M., Flanders, W. D. & Kramer, M. R. Preterm birth, poverty, and cognitive development. Pediatrics 141, e20170509 (2018).

  142. Dimes, M. o. Peristats: Preterm Birth, https://www.marchofdimes.org/peristats/data?top=3&lev=1&stop=60&reg=99&obj=1&slev=1 (2024).

  143. Kaempf, J. W., Guillen, U., Litt, J. S., Zupancic, J. A. F. & Kirpalani, H. Change in neurodevelopmental outcomes for extremely premature infants over time: a systematic review and meta-analysis. Arch. Dis. Child Fetal Neonatal Ed. 105, 458–463 (2022).

  144. Statistics, N. C. f. H. Final natality data, https://www.marchofdimes.org/peristats (2022).

  145. Halfon, N. & Hochstein, M. Life course health development: an integrated framework for developing health, policy, and research. Milbank Q. 80, 433–479 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Iakovou, E. & Kourti, M. A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions. Front. Aging Neurosci. 14, 827900 (2022).

  147. Ozsurekci, Y. & Aykac, K. Oxidative stress related diseases in newborns. Oxid. Med. Cell Longev. 2016, 2768365 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Liguori, I. et al. Oxidative stress, aging, and diseases. Clin. Inter. Aging 13, 757–772 (2018).

    Article  CAS  Google Scholar 

  149. Singh, A. et al. Aging and inflammation. Cold Spring Harb. Perspect. Med. 14, a041197 (2024).

  150. Humberg, A. et al. Preterm birth and sustained inflammation: consequences for the neonate. Semin. Immunopathol. 42, 451–468 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Panyard, D. J., Yu, B. & Snyder, M. P. The Metabolomics of human aging: advances, challenges, and opportunities. Sci. Adv. 8, eadd6155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Renwick, V. L. & Stewart, C. J. Exploring functional metabolites in preterm infants. Acta Paediatr. 111, 45–53 (2022).

    Article  PubMed  Google Scholar 

  154. Hornburg, D. et al. Dynamic lipidome alterations associated with human health, disease and ageing. Nat. Metab. 5, 1578–1594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ahmad, T. et al. Shelterin telomere protection protein 1 reduction causes telomere attrition and cellular senescence via sirtuin 1 deacetylase in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 56, 38–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, K. et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct. Target Ther. 7, 374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Saul, D. & Kosinsky, R. L. Epigenetics of aging and aging-associated diseases. Int. J. Mol. Sci. 22, 401 (2021).

Download references

Funding

NICHD K23 HD088695.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the conception, organization, and reasoning of this review article. Dr. Litt drafted the manuscript. All co-authors provided comprehensive comments and contributed to manuscript editing. All authors approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Jonathan S. Litt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litt, J.S., Belfort, M.B., Everson, T.M. et al. Neonatal multimorbidity and the phenotype of premature aging in preterm infants. Pediatr Res 97, 2258–2266 (2025). https://doi.org/10.1038/s41390-024-03617-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03617-2

Search

Quick links