Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Article
  • Published:

A validated NICU database: recounting 50 years of clinical growth, quality improvement and research

Abstract

The importance of a Neonatal Intensive Care Unit (NICU) database lies in its critical role in improving the quality of care for very preterm neonates and other high-risk newborns. These databases contain extensive information regarding maternal exposures, pregnancy complications, and neonatal care. They support quality improvement (QI) initiatives, facilitate clinical research, and track health outcomes in order to identify best practices and improve clinical guidelines. The Parkland Memorial Hospital NICU database was originally part of the Maternal and Neonatal Data Acquisition, Transmission and Evaluation project funded by the Robert Wood Johnson Foundation to assess perinatal-neonatal care in Dallas County Texas, 1977–1982. Clinical data points were defined, transcribed and validated in 1977; revalidation has occurred multiple times. Data are prospectively extracted from health records of high-risk neonates among >11,000 births annually. The database contains clinical information on >50,000 neonates, including all initially admitted to the NICU regardless of gestational age or birthweight and since 10/03/2011, all neonates admitted for observation and transferred to the term newborn nursery. The database has provided the basis for QI studies and research designed to assess and improve neonatal care. We discuss the history, evolution, administration, impact on neonatal outcomes, and future directions of our database.

Impact

  • A single neonatal intensive care unit (NICU) database was designed for prospective data collection, validated and maintained for 46yrs.

  • This database has supported quality improvement assessment, original clinical research, education and administrative requirements and impacted clinical neonatal care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of development of Parkland NICU Database from 1977 to 2021.
Fig. 2: Infant survival and survival without severe morbidity by gestational age, January 2018-June 2023.
Fig. 3: Trends in treatment modalities for patent ductus arteriosus from 2001 to 2023 among neonates 24–28 weeks gestational age.

Similar content being viewed by others

Data availability

The datasets analyzed during the current study and the documentation notebook can be made available upon reasonable request after noting their intended use and after consideration by the Faculty physician responsible for its maintenance, currently Dr. Mambarambath Jaleel (email: Mambarambath.Jaleel@utsouthwestern.edu)

References

  1. Statnikov, Y., Ibrahim, B. & Modi, N. A systematic review of administrative and clinical databases of infants admitted to neonatal units. Arch. Dis. Child Fetal Neonatal Ed. 102, F270–F276 (2017).

    Article  PubMed  Google Scholar 

  2. Creel, L. M., Gregory, S., McNeal, C. J., Beeram, M. R. & Krauss, D. R. Multicenter neonatal databases: trends in research uses. BMC Res Notes 10, 42 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gould, J. B. Building the first statewide quality improvement collaborative, the CPQCC: a historic perspective. Children 7, 177 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Spitzer, A. R., Ellsbury, D. & Clark, R. H. The Pediatrix Babysteps® data warehouse–a unique national resource for improving outcomes for neonates. Indian J. Pediatr. 82, 71–79 (2015).

    Article  PubMed  Google Scholar 

  5. Escobar, G. et al. Rapid retrieval of neonatal outcomes data: the kaiser permanente neonatal minimum data set. Qual. Manag Health Care 5, 19–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Pinheiro, J. M. B. et al. A multifunctional, low cost and sustainable neonatal database system. Child. (Basel, Switz.) 11, 217 (2024).

    Google Scholar 

  7. Murthy, K. et al. The Children’s Hospitals neonatal database: an overview of patient complexity, outcomes and variation in care. J. Perinatol. 34, 582–586 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Osborne, J. W. Data Cleaning Basics: Best Practices in Dealing with Extreme Scores. Newborn Infant Nurs. Rev. 10, 37–43 (2010).

  9. Tawfik, D. S., Gould, J. B. & Profit, J. Perinatal risk factors and outcome coding in clinical and administrative databases. Pediatrics 143, e20181487 (2019).

    Article  PubMed  Google Scholar 

  10. Ford, J. B. et al. Using hospital discharge data for determining neonatal morbidity and mortality: a validation study. BMC Health Serv. Res 7, 188 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Battersby, C. et al. The United Kingdom National Neonatal Research database: a validation study. PLoS One 13, e0201815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Joseph, K. S., Fahey, J. & System, C. P. S. Validation of perinatal data in the discharge abstract database of the Canadian Institute for Health Information. Chronic Dis. Can. 29, 96–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Guzick, D. S. et al. Risk Factors for the Occurrence of Pregnancy-Induced Hypertension. Clinical and Experimental Hypertension Part B: Hypertension in Pregnancy (1987).

  14. Lasky, R. E. et al. Disappointing follow-up findings for indigent high-risk newborns. Am. J. Dis. Child. (1960) 141, 100–105 (1987).

    CAS  Google Scholar 

  15. Tyson, J. E. & Saigal, S. Outcomes for extremely low-birth-weight infants: disappointing news. JAMA 294, 371–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Scheid, L. M., Brown, L. S., Clark, C. & Rosenfeld, C. R. Data electronically extracted from the electronic health record require validation. J. Perinatol. 39, 468–474 (2019).

    Article  PubMed  Google Scholar 

  17. Stocks, E. F. et al. Decreasing delivery room CPAP-associated pneumothorax at ≥35-week gestational age. J. Perinatol. 42, 761–768 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med 163, 1723–1729 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kliegman, R. M. & Walsh, M. C. Neonatal necrotizing enterocolitis: pathogenesis, classification, and spectrum of illness. Curr. Probl. Pediatr. 17, 213–288 (1987).

    CAS  PubMed  Google Scholar 

  20. Jensen, E. A. et al. Severity of bronchopulmonary dysplasia among very preterm infants in the United States. Pediatrics 148, e2020030007 (2021).

    Article  PubMed  Google Scholar 

  21. Brion, L. P. et al. Adjustable feedings plus accurate serial length measurements decrease discharge weight-length disproportion in very preterm infants: quality improvement project. J. Perinatology: Off. J. Calif. Perinat. Assoc. 39, 1131–1139 (2019).

    Article  Google Scholar 

  22. Kakkilaya, V. et al. Quality improvement project to decrease delivery room intubations in preterm infants. Pediatrics 143, e20180201 (2019).

    Article  PubMed  Google Scholar 

  23. Kakkilaya, V. B. et al. Decreasing continuous positive airway pressure failure in preterm infants. Pediatrics 148, e2020014191 (2021).

    Article  PubMed  Google Scholar 

  24. Reis, J. D. et al. Quality improvement project designed to reduce disproportionate growth in extremely low gestational age neonates: cognitive neurodevelopmental outcome at 18-41 months. J. Perinatology: Off. J. Calif. Perinat. Assoc. 41, 1050–1058 (2021).

    Article  CAS  Google Scholar 

  25. Leveno, K. J., McIntire, D. D., Bloom, S. L., Sibley, M. R. & Anderson, R. J. Decreased preterm births in an inner-city public hospital. Obstet. Gynecol. 113, 578–584 (2009).

    Article  PubMed  Google Scholar 

  26. Tyson, J. E., Lasky, R. E., Rosenfeld, C. R., Dowling, S. & Gant, N. An analysis of potential biases in the loss of indigent infants to follow-up. Early Hum. Dev. 16, 13–25 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez, A., Mize, S., Jimenez, J., Manroe, B. & Rosenfeld, C. Systems Approach to the Evaluation of Maternal and Neonatal Care, Selected Papers in Medical Information Processing. 140-151 (1979).

  28. Mize S. G., et al. Quality Control of a Large Perinatal Information System. Proc. Second Cleveland Symp. Perinatal Computing, 1982: Pp. 23-26.

  29. Strickland, D. M., Guzick, D. S., Cox, K., Gant, N. F. & Rosenfeld, C. R. The relationship between abortion in the first pregnancy and development of pregnancy-induced hypertension in the subsequent pregnancy. Am. J. Obstet. Gynecol. 154, 146–148 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Little, B. B., Snell, L. M., Rosenfeld, C. R., Gilstrap, L. C. & Gant, N. F. Failure to recognize fetal alcohol syndrome in newborn infants. Am. J. Dis. Child 144, 1142–1146 (1990).

    CAS  PubMed  Google Scholar 

  31. Strand, C. et al. Neonatal intracranial hemorrhage: I. changing pattern in inborn low-birth-weight infants. Early Hum. Dev. 23, 117–128 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Tyson, J. et al. Prenatal care evaluation and cohort analyses. Pediatrics 85, 195–204 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Wallin, L. A. et al. Neonatal intracranial hemorrhage: II. risk factor analysis in an inborn population. Early Hum. Dev. 23, 129–137 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Little, B. B. et al. Heroin abuse during pregnancy: effects on perinatal outcome and early childhood growth. Am. J. Hum. Biol. 3, 463–468 (1991).

    Article  PubMed  Google Scholar 

  35. Mouzinho, A. I., Rosenfeld, C. R. & Risser, R. Symptomatic patent ductus arteriosus in very-low-birth-weight infants: 1987-1989. Early Hum. Dev. 27, 65–77 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Hernández, C., Little, B. B., Dax, J. S., Gilstrap, L. C. & Rosenfeld, C. R. Prediction of the severity of meconium aspiration syndrome. Am. J. Obstet. Gynecol. 169, 61–70 (1993).

    Article  PubMed  Google Scholar 

  37. Mouzinho, A., Rosenfeld, C. R., Sánchez, P. J. & Risser, R. Revised reference ranges for circulating neutrophils in very-low-birth-weight neonates. Pediatrics 94, 76–82 (1994).

    CAS  PubMed  Google Scholar 

  38. Tyson, J. E., Kennedy, K., Broyles, S. & Rosenfeld, C. R. The small for gestational age infant: accelerated or delayed pulmonary maturation? increased or decreased survival? Pediatrics 95, 534–538 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Engle, W. D. et al. Circulating neutrophils in septic preterm neonates: comparison of two reference ranges. Pediatrics 99, E10 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Kaiser, J. R., Tilford, J. M., Simpson, P. M., Salhab, W. A. & Rosenfeld, C. R. Hospital survival of very-low-birth-weight neonates from 1977 to 2000. J. Perinatol. 24, 343–350 (2004).

    Article  PubMed  Google Scholar 

  41. LeFlore, J. L., Engle, W. D. & Rosenfeld, C. R. Determinants of blood pressure in very low birth weight neonates: lack of effect of antenatal steroids. Early Hum. Dev. 59, 37–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. LeFlore, J. L., Salhab, W. A., Broyles, R. S. & Engle, W. D. Association of antenatal and postnatal dexamethasone exposure with outcomes in extremely low birth weight neonates. Pediatrics 110, 275–279 (2002).

    Article  PubMed  Google Scholar 

  43. Salhab, W. A., Wyckoff, M. H., Laptook, A. R. & Perlman, J. M. Initial hypoglycemia and neonatal brain injury in term infants with severe fetal acidemia. Pediatrics 114, 361–366 (2004).

    Article  PubMed  Google Scholar 

  44. Wyckoff, M. H. & Perlman, J. M. Effective ventilation and temperature control are vital to outborn resuscitation. Prehosp. Emerg. Care 8, 191–195 (2004).

    Article  PubMed  Google Scholar 

  45. Woldesenbet, M. & Perlman, J. M. Histologic chorioamnionitis: an occult marker of severe pulmonary hypertension in the term newborn. J. Perinatol. 25, 189–192 (2005).

    Article  PubMed  Google Scholar 

  46. Wyckoff, M. H., Perlman, J. M. & Laptook, A. R. Use of volume expansion during delivery room resuscitation in near-term and term infants. Pediatrics 115, 950–955 (2005).

    Article  PubMed  Google Scholar 

  47. Barber, C. A. & Wyckoff, M. H. Endotracheal versus intravenous epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. Pediatrics 118, 1028–1034 (2006).

    Article  PubMed  Google Scholar 

  48. Koch, J. et al. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less. Pediatrics 117, 1113–1121 (2006).

    Article  PubMed  Google Scholar 

  49. Chalak, L. F. et al. Perinatal acidosis and hypoxic-ischemic encephalopathy in preterm infants of 33 to 35 weeks’ gestation. J. Pediatr. 160, 388–394 (2012).

    Article  PubMed  Google Scholar 

  50. DuPont, T. L. et al. Short-term outcomes of newborns with perinatal acidemia who are not eligible for systemic hypothermia therapy. J. Pediatr. 162, 35–41 (2013).

    Article  PubMed  Google Scholar 

  51. Kapadia, V. S. et al. Perinatal asphyxia with hyperoxemia within the first hour of life is associated with moderate to severe hypoxic-ischemic encephalopathy. J. Pediatrics 163, 949–954 (2013).

    Article  Google Scholar 

  52. Kapadia, V. S. et al. Resuscitation of preterm neonates with limited versus high oxygen strategy. Pediatrics 132, e1488–e1496 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. LeVan, J. M. et al. Change in care among nonenrolled patients during and after a randomized trial. Pediatrics 132, e960–e970 (2013).

    Article  PubMed  Google Scholar 

  54. LeVan, J. M. et al. Change in practice after the surfactant, positive pressure and oxygenation randomised trial. Arch. Dis. Child. Fetal Neonatal Ed. 99, F386–F390 (2014).

    Article  PubMed  Google Scholar 

  55. Mikhael, M., Brown, L. S. & Rosenfeld, C. R. Serial neutrophil values facilitate predicting the absence of neonatal early-onset sepsis. J. Pediatr. 164, 522-528.e521–523 (2014).

    Article  Google Scholar 

  56. Ronchi, A., Doern, C., Brock, E., Pugni, L. & Sánchez, P. J. Neonatal adenoviral infection: a seventeen year experience and review of the literature. J. Pediatr. 164, 29-535.e521–524 (2014).

    Article  Google Scholar 

  57. Lopez-Medina, E., Cantey, J. B. & Sánchez, P. J. The mortality of neonatal herpes simplex virus infection. J. Pediatr. 166, 1529–1532.e1521 (2015).

    Article  PubMed  Google Scholar 

  58. Motta, C. et al. The association of congenital heart disease with necrotizing enterocolitis in preterm infants: a birth cohort study. J. Perinatol. 35, 949–953 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. DeVries, L. B. et al. Mortality among Infants with evolving bronchopulmonary dysplasia increases with major surgery and with pulmonary hypertension. J. Perinatol. 37, 1043–1046 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Halling, C., Sparks, J. E., Christie, L. & Wyckoff, M. H. Efficacy of intravenous and endotracheal epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. J. Pediatr. 185, 232–236 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Kapadia, V. S. et al. Impact of the neonatal resuscitation program recommended low oxygen strategy on outcomes of preterm infants. J. pediatrics 191, 35–41 (2017).

    Article  Google Scholar 

  62. Pavageau, L. et al. Decrease in the frequency of treatment for patent ductus arteriosus after implementation of consensus guidelines: a 15-year experience. J. Perinatology: Off. J. Calif. Perinat. Assoc. 39, 1569–1576 (2019).

    Article  Google Scholar 

  63. Sisman, J. et al. Lenticulostriate vasculopathy in preterm infants: a new classification, clinical associations and neurodevelopmental outcome. J. Perinatol. 38, 1370–1378 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Kakkilaya, V. et al. Early predictors of continuous positive airway pressure failure in preterm neonates. J. Perinatol. 39, 1081–1088 (2019).

    Article  PubMed  Google Scholar 

  65. Pavageau, L. et al. Valid Serial Length Measurements in Preterm Infants Permit Characterization of Growth Patterns. Journal of Perinatology, (2018).

  66. Rosenfeld, C. R., Shafer, G., Scheid, L. M. & Brown, L. S. Screening and serial neutrophil counts do not contribute to the recognition or diagnosis of late-onset neonatal sepsis. J. Pediatr. 205, 105–111.e102 (2019).

    Article  PubMed  Google Scholar 

  67. Smithhart, W. et al. Delivery room continuous positive airway pressure and pneumothorax. Pediatrics 144, e20190756 (2019).

    Article  PubMed  Google Scholar 

  68. Brion, L. P. et al. Optimizing individual nutrition in preterm very low birth weight infants: double-blinded randomized controlled trial. J. Perinatol. 40, 655–665 (2020).

    Article  PubMed  Google Scholar 

  69. Brion, L. P. et al. Association of age of initiation and type of complementary foods with body mass index and weight-for-length at 12 months of age in preterm infants. J. Perinatol. 40, 1394–1404 (2020).

    Article  PubMed  Google Scholar 

  70. Brion, L. P. et al. Zinc deficiency limiting head growth to discharge in extremely low gestational age infants with insufficient linear growth: a cohort study. J. Perinatol. 40, 1694–1704 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Mir, I. N. et al. Impact of multiple placental pathologies on neonatal death, bronchopulmonary dysplasia, and neurodevelopmental impairment in preterm infants. Pediatr. Res 87, 885–891 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Kakkilaya, V. et al. Discontinuing nasal continuous positive airway pressure in infants ≤32 weeks of gestational age: a randomized control trial. J. Pediatrics 230, 93–99.e93 (2021).

    Article  Google Scholar 

  73. Mir, I. N. et al. Autism spectrum disorders in extremely preterm infants and placental pathology findings: a matched case-control study. Pediatr. Res 89, 1825–1831 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Sivarajan, M. et al. Decreasing early hypoglycemia frequency in at-risk newborns after implementing a new hypoglycemia screening algorithm. J. Perinatol. 41, 2840–2846 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Weydig, H. M. et al. Association of antenatal steroids with neonatal mortality and morbidity in preterm infants born to mothers with diabetes mellitus and hypertension. J. Perinatol. 41, 1660–1668 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Abbey, N. V. et al. Electrocardiogram for heart rate evaluation during preterm resuscitation at birth: a randomized trial. Pediatr. Res. 91, 1445–1451 (2022).

    Article  PubMed  Google Scholar 

  77. Weydig, H. M. et al. Association of antenatal steroids with surfactant administration in moderate preterm infants born to women with diabetes mellitus and/or hypertension. J. Perinatol. 42, 993–1000 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Chan, C. S. et al. Evaluation of a Respiratory Care Protocol Including Less Invasive Surfactant Administration in Preterm Infants. Pediatr Res (2023).

  79. Chiu, M. et al. Risk factors for admission hyperthermia and associated outcomes in infants born preterm. J. Pediatrics 265, 113842 (2024).

    Article  Google Scholar 

  80. Mir, I. N. et al. Impact of Fetal Inflammatory Response on the Severity of Necrotizing Enterocolitis in Preterm Infants. Pediatr Res (2023).

  81. Reis, J. D. et al. Double-blinded randomized controlled trial of optimizing nutrition in preterm very low birth weight infants: bayley scores at 18-38 months of age. J. Perinatol. 43, 81–85 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Reis, J. D. et al. Relationship between Ventricular Size on Latest Ultrasonogram and the Bayley Scores ≥ 18 Months in Extremely Low Gestational Age Neonates: A Retrospective Cohort Study. Am J Perinatol, (2023).

  83. Sanchez-Rosado, M. et al. Growth after implementing a donor breast milk program in neonates <33 weeks gestational age or birthweight <1500 grams: retrospective cohort study. J. Perinatol. 43, 608–615 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nayak, S. P. et al. Development of a Prediction Model for Surgery or Early Mortality at the Time of Initial Assessment for Necrotizing Enterocolitis. Am J Perinatol (2023).

  85. Sanchez-Rosado, M. et al. Impact of Size for Gestational Age on Multivariate Analysis of Factors Associated with Necrotizing Enterocolitis in Preterm Infants: Retrospective Cohort Study. Am J Perinatol (2023).

  86. Reis, J. D. et al. Follow-up of a randomized trial optimizing neonatal nutrition in preterm very low birthweight infants: growth, serum adipokines, renal function and blood pressure. J. Perinatol. 44, 78–86 (2024).

    Article  CAS  PubMed  Google Scholar 

  87. Stumpf, K., Sharma, P., Brown, L. S., Brion, L. P. & Mirpuri, J. Maternal body mass index and necrotizing enterocolitis: a case-control study. PLOS ONE 19, e0296644 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reis, J., Sanchez-Rosado, M. & Math, D. Multivariate Analysis of Factors Associated with Feeding Mother’s Own Milk at Discharge in Preterm Infants: A Retrospective Cohort Study. American Journal of Perinatology (2024).

  89. Herrick, H. M. et al. Decreasing intubation for ineffective ventilation after birth for very low birth weight neonates. Pediatr. Qual. Saf. 7, e580 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stoll, B. J. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. Jama 314, 1039–1051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rysavy, M. A. et al. Assessment of an updated neonatal research network extremely preterm birth outcome model in the Vermont Oxford network. JAMA pediatrics 174, e196294 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chiruvolu, A. & Jaleel, M. A. Therapeutic management of patent ductus arteriosus. Early Hum. Dev. 85, 151–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Bixler, G. M., Powers, G. C., Clark, R. H., Walker, M. W. & Tolia, V. N. Changes in the diagnosis and management of patent ductus arteriosus from 2006 to 2015 in United States neonatal intensive care units. J. Pediatr. 189, 105–112 (2017).

    Article  PubMed  Google Scholar 

  94. Kaluarachchi, D. C. et al. Secular trends in patent ductus arteriosus management in infants born preterm in the National Institute of Child Health and Human Development Neonatal Research Network. J. Pediatrics 266, 113877 (2024).

    Article  Google Scholar 

  95. Lokku, A., Mirea, L., Lee, S. K., Shah, P. S. & Canadian Neonatal, N. Trends and outcomes of patent ductus arteriosus treatment in very preterm infants in Canada. Am. J. Perinatol. 34, 441–450 (2017).

    Article  PubMed  Google Scholar 

  96. Hagadorn, J. I. et al. Trends and variation in management and outcomes of very low-birth-weight infants with patent ductus arteriosus. Pediatr. Res 80, 785–792 (2016).

    Article  PubMed  Google Scholar 

  97. Ngo, S., Profit, J., Gould, J. B. & Lee, H. C. Trends in patent ductus arteriosus diagnosis and management for very low birth weight infants. Pediatrics 139, e20162390 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. S Kapadia, V. et al. Impact of the neonatal resuscitation program–recommended low oxygen strategy on outcomes of infants born preterm. J. Pediatrics 191, 35–41 (2017).

    Article  Google Scholar 

  99. Kattwinkel, J. et al. Part 15: neonatal resuscitation: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122, S909–S919 (2010).

    Article  PubMed  Google Scholar 

  100. Wyckoff, M. H. et al. Part 13: neonatal resuscitation: 2015 American Heart Association Guidelines Update For Cardiopulmonary Resuscitation And Emergency Cardiovascular Care. Circulation 132, S543–S560 (2015).

    Article  PubMed  Google Scholar 

  101. Merchant, R. M. et al. Part 1: executive summary: 2020 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 142, S337–S357 (2020).

    Article  PubMed  Google Scholar 

  102. Hishikawa, K. et al. Pulmonary air leak associated with CPAP at term birth resuscitation. Arch. Dis. Child Fetal Neonatal Ed. 100, F382–F387 (2015).

    Article  PubMed  Google Scholar 

  103. Claassen, C. C. & Strand, M. L. Understanding the risks and benefits of delivery room CPAP for term infants. Pediatrics 144, e20191720 (2019).

    Article  PubMed  Google Scholar 

  104. Shah, B. A., Fabres, J. G., Leone, T. A., Schmölzer, G. M. & Szyld, E. G. International liaison committee on resuscitation neonatal life support task force. continuous positive airway pressure for term and ≥34+0 weeks’ gestation newborns at birth: a systematic review. Resusc. 12, 100320 (2022).

    Google Scholar 

  105. Vadakkencherry Ramaswamy, V., Abiramalatha, T., Weiner, G. M. & Trevisanuto, D. A comparative evaluation and appraisal of 2020 American Heart Association and 2021 European Resuscitation Council Neonatal Resuscitation Guidelines. Resuscitation 167, 151–159 (2021).

    Article  PubMed  Google Scholar 

  106. Madar, J. et al. European Resuscitation Council Guidelines 2021: newborn resuscitation and support of transition of infants at birth. Resuscitation 161, 291–326 (2021).

    Article  PubMed  Google Scholar 

  107. Jhaveri, V., Vali, P., Giusto, E., Singh, Y. & Lakshminrusimha, S. Pneumothorax in a term newborn. J. Perinatol. 44, 465–471 (2024).

    Article  PubMed  Google Scholar 

  108. Laptook, A. R. et al. Antenatal steroids, prophylactic indomethacin, and the risk of spontaneous intestinal perforation. J. Pediatrics 259, 113457 (2023).

    Article  CAS  Google Scholar 

  109. Wickland, J. et al. Persistent high blood pressure and renal dysfunction in preterm infants during childhood. Pediatr. Res. 93, 217–225 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Goss K. N. Parkland outcomes after prematurity study (POPS). https://labs.utsouthwestern.edu/goss-lab/research, accessed 03/23/2024 Research | Goss Lab | UT Southwestern, Dallas, Texas (2024).

Download references

Acknowledgements

The PMH NICU database program was initially written as part of the MANDATE project. It was later converted into successive versions of Access by Ms. Mechelle Murray and by Ms. Ellen Suen. The initiation and design of the database included Jon E Tyson, MD, Juan Jimeniz, MD, Charles R Rosenfeld, MD and Sue Mize, Director of Statistics at UTSW. Research nurses entering data in the NICU database have included Sherry Hutton, RN, Sharon Dowling, RN, Norma Threlkeld, RN, PNP and Patti Jeannette Burchfield, RN (2000–present). NICU database managers have included Jon E. Tyson, MD, Kathleen Kennedy, MD, Charles R. Rosenfeld, MD, Jeffrey Perlman, MD, Walid Salhab, MD (1998–2006), Luc P Brion, MD (2007–2023) and Mambarambath Jaleel, MD (2023–present). Kara Goss, MD, is the principal investigator of the Parkland Outcomes after Prematurity Study (POPS).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Kikelomo Babata conceptualized and designed the study, designed the data collection instruments, searched for and retrieved relevant publications, collected data for validation and helped with first drafting of the manuscript. Dr. Charles R. Rosenfeld participated in the initial database design and contributed to the conceptualization and design of the study and assisted in the initial draft of the manuscript. Dr. Mambarambath Jaleel contributed to the conceptualization and the study design. Dr. Marina Santos Oren designed the data collection instruments and collected data for validation. Ms. Riya Albert designed the data collection instruments and collected data for validation. Ms. Patti J. Burchfield was responsible for collecting and entering all data for the database in 2000–2023 and assisted in the design of data collection instruments. Mr. L. Steven Brown designed the data collection instruments, did the randomization and carried out statistical analyzes. Dr. Chalak contributed by revising the manuscript critically for important intellectual content, including editing, formatting, and finalizing the document. Dr. Luc P. Brion conceptualized and designed the study, designed the data collection instruments, formulated data for validation, carried out statistical analyzes, searched for and retrieved relevant publications and drafted the first version of the manuscript. All authors critically have reviewed and edited the final manuscript, and all have approved the final manuscript as submitted and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Kikelomo Babata.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babata, K., Rosenfeld, C.R., Jaleel, M. et al. A validated NICU database: recounting 50 years of clinical growth, quality improvement and research. Pediatr Res 97, 2224–2234 (2025). https://doi.org/10.1038/s41390-024-03624-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03624-3

This article is cited by

Search

Quick links