Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fundamentals of DNA methylation in development

Abstract

DNA methyation is critical to regulation of gene expression especially during developmentally dynamic changes. A large proportion occurs at CpG (a cytosine followed by a guanine nucleotide) sites and impacts gene expression based on location, timing and level of DNA methylation. The spectrum of effects produced by DNA methylation ranges from inhibition to enhancement of gene expression. Here basic terms and concepts in the study of DNA methylation are introduced. In addition, some of the commonly used techniques to assay DNA methylation are explained. New methods that allow the precise addition and removal of DNA methylation at specific sites will likely enhance our understanding of DNA methylation in development and may even lead to long-lasting therapeutic strategies to cure diseases.

Impact

  • Fundamentals of DNA methylation including its significance are made accessible to a broad audience.

  • Common assays for detecting DNA methylation are explained succinctly.

  • Developmental patterns of DNA methylation detected in commonly used animal models are discussed and explained.

  • Novel methodologies to investigate consequences of DNA methylation and demethylation are introduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CpG methylation.
Fig. 2: Basic genome components.
Fig. 3: Typical distribution of methylated DNA in mammalian DNA.
Fig. 4: DNA methylation controls transcription.
Fig. 5: How does methylation of DNA inhibit transcription? Answers can be gleaned from computational and experimental studies.
Fig. 6: Assays for DNA methylation.
Fig. 7: DNA methylation during development.
Fig. 8: Modified CRISPR technology to methylate and demethylate selected DNA segments.

Similar content being viewed by others

References

  1. Riggs, A. D. X chromosome inactivation, differentiation, and DNA methylation revisited, with a tribute to Susumu Ohno. Cytogenet. Genome Res. 99, 17–24 (2002).

    PubMed  CAS  Google Scholar 

  2. Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).

    PubMed  CAS  Google Scholar 

  3. Phillips, T. The role of methylation in gene expression. Nat. Educ. 1, 116 (2008).

    Google Scholar 

  4. Jimenez-Useche, I. & Yuan, C. The effect of DNA CpG methylation on the dynamic conformation of a nucleosome. Biophys. J. 103, 2502–2512 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhou, D. & Robertson, K. D. Role of DNA Methylation in Genome Stability. in Genome Stability (eds. Kovalchuk, I. & Kovalchuk, O.) 409–424 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-803309-8.00024-0.

  6. Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).

    PubMed  CAS  Google Scholar 

  7. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    PubMed  CAS  Google Scholar 

  8. Lio, C.-W. J. & Rao, A. TET enzymes and 5hmC in adaptive and innate immune systems. Front. Immunol. 10, 210 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Shi, D.-Q., Ali, I., Tang, J. & Yang, W.-C. New Insights into 5hmC DNA modification: generation, distribution and function. Front. Genet. 8, 100 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Gabel, H. W. & Greenberg, M. E. The Maturing Brain Methylome. Science (80-) 341, 626–627 (2013).

  11. Kinde, B., Gabel, H. W., Gilbert, C. S., Griffith, E. C. & Greenberg, M. E. Reading the unique DNA methylation landscape of the brain: Non-CpG methylation, hydroxymethylation, and MeCP2. Proc. Natl Acad. Sci. USA. 112, 6800–6806 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang, D. et al. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Res. 45, 3102–3115 (2017).

  13. Jabbari, K., Cacio, S., Pais de Barros, J. P., Desgres, J. & Bernardi, G. Evolutionary changes in CpG and methylation levels in the genome of vertebrates. Gene 205, 109–18 (1997).

  14. Jiang, N. et al. Conserved and divergent patterns of DNA methylation in higher vertebrates. Genome Biol. Evol. 6, 2998–3014 (2014).

  15. Zhou, J. et al. Tissue-specific DNA methylation is conversed across human, mouse, and rat, and driven by primary sequence conservation. BMC Genomics 18, 724 (2017).

  16. Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).

    PubMed  CAS  Google Scholar 

  17. Sleutels, F. & Barlow, D. P. The origins of genomic imprinting in mammals. Adv. Genet. 46, 119–163 (2002).

    PubMed  CAS  Google Scholar 

  18. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Bird, A. P. CpG islands as gene markers in the vertebrate nucleus. Trends Genet 3, 342–347 (1987).

    CAS  Google Scholar 

  20. Zhao, Z. & Han, L. CpG islands: algorithms and applications in methylation studies. Biochem. Biophys. Res. Commun. 382, 643–645 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA. 99, 3740–3745 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Takai, D. & Jones, P. A. The CpG island searcher: a new WWW resource. Silico Biol. 3, 235–240 (2003).

    CAS  Google Scholar 

  23. Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Visone, R. et al. DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics 11, 587–604 (2019).

    PubMed  CAS  Google Scholar 

  25. Edgar, R., Tan, P. P., Portales-Casamar, E. & Pavlidis, P. Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenet. Chromat. 7, 28 (2014).

    Google Scholar 

  26. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Bilir, B. et al. Effects of genistein supplementation on genome-wide DNA methylation and gene expression in patients with localized prostate cancer. Int. J. Oncol. 51, 223–234 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).

    PubMed  CAS  Google Scholar 

  30. Dantas Machado, A. C. et al. Evolving insights on how cytosine methylation affects protein-DNA binding. Brief. Funct. Genomics 14, 61–73 (2015).

    PubMed  CAS  Google Scholar 

  31. Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics 1, 239–259 (2009).

    PubMed  CAS  Google Scholar 

  32. Feng, J., Fouse, S. & Fan, G. Epigenetic regulation of neural gene expression and neuronal function. Pediatr. Res. 61, 58R–63R (2007).

    PubMed  CAS  Google Scholar 

  33. Arechederra, M. et al. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat. Commun. 9, 3164 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Yang, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 577–590 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Salinas, R. D., Connolly, D. R. & Song, H. Invited review: epigenetics in neurodevelopment. Neuropathol. Appl. Neurobiol. 46, 6–27 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Dolinoy, D. C. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr. Rev. 66, S7–S11 (2008).

    PubMed  Google Scholar 

  37. Kaminen-Ahola, N. et al. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6, e1000811 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Waterland, R. A. et al. Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis 44, 401–406 (2006).

    PubMed  CAS  Google Scholar 

  39. Dolinoy, D. C., Weidman, J. R., Waterland, R. A. & Jirtle, R. L. Maternal genistein alters coat color and protects A vy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 114, 567–572 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Du, Q., Luu, P.-L., Stirzaker, C. & Clark, S. J. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7, 1051–1073 (2015).

    PubMed  CAS  Google Scholar 

  42. Filion, G. J. P. et al. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell. Biol. 26, 169–181 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Patnaik, D., Estève, P.-O. & Pradhan, S. Targeting the SET and RING-associated (SRA) domain of ubiquitin-like, PHD and ring finger-containing 1 (UHRF1) for anti-cancer drug development. Oncotarget 9, 26243–26258 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Daniel, J. M. & Reynolds, A. B. The Catenin p120 ctn interacts with kaiso, a Novel BTB/POZ domain zinc finger transcription factor. Mol. Cell. Biol. 19, 3614–3623 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Rao, S. et al. Systematic prediction of DNA shape changes due to CpG methylation explains epigenetic effects on protein-DNA binding. Epigenet. Chromat. 11, 6 (2018).

    Google Scholar 

  47. Kribelbauer, J. F., Lu, X.-J., Rohs, R., Mann, R. S. & Bussemaker, H. J. Toward a mechanistic understanding of DNA methylation readout by transcription factors. J. Mol. Biol. 432, 1801–1815 (2020).

    PubMed  CAS  Google Scholar 

  48. Lee, J. Y. & Lee, T.-H. Effects of DNA methylation on the structure of nucleosomes. J. Am. Chem. Soc. 134, 173–175 (2012).

    PubMed  CAS  Google Scholar 

  49. Teng, X. & Hwang, W. Effect of methylation on local mechanics and hydration structure of DNA. Biophys. J. 114, 1791–1803 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Buitrago, D. et al. Impact of DNA methylation on 3D genome structure. Nat. Commun. 12, 3243 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Greenfield, R. et al. Role of transcription complexes in the formation of the basal methylation pattern in early development. Proc. Natl Acad. Sci. USA. 115, 10387–10391 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Gan, H. et al. Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis. Nat. Commun. 4, 1995 (2013).

    PubMed  Google Scholar 

  53. Szulwach, K. E. et al. 5-hmC–mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14, 1607–1616 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Rodríguez-Aguilera, J. R. et al. Genome-wide 5-hydroxymethylcytosine (5hmC) emerges at early stage of in vitro differentiation of a putative hepatocyte progenitor. Sci. Rep. 10, 7822 (2020).

    PubMed  PubMed Central  Google Scholar 

  55. Pastor, W. A. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).

    PubMed  CAS  Google Scholar 

  57. Skvortsova, K. et al. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenet. Chromat. 10, 16 (2017).

    Google Scholar 

  58. Lu, X. et al. Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res. 25, 386–389 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Kitsera, N. et al. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter. Nucleic Acids Res. 45, 11033–11042 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Storebjerg, T. M. et al. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Clin. Epigenet 10, 105 (2018).

    Google Scholar 

  61. Zuo, T., Tycko, B., Liu, T.-M., Lin, H.-J. L. & Huang, T. H.-M. Methods in DNA methylation profiling. Epigenomics 1, 331–345 (2009).

    PubMed  CAS  Google Scholar 

  62. Feng, L. & Lou, J. DNA Methylation Analysis. in Methods in Molecular Biology (Clifton, N.J.) 1894 181–227 (2019).

  63. Beck, D., Ben Maamar, M. & Skinner, M. K. Genome-wide CpG density and DNA methylation analysis method (MeDIP, RRBS, and WGBS) comparisons. Epigenetics 17, 518–530 (2022).

    PubMed  Google Scholar 

  64. Pajares, M. J. et al. Methods for analysis of specific DNA methylation status. Methods 187, 3–12 (2021).

    PubMed  CAS  Google Scholar 

  65. Kurdyukov, S. & Bullock, M. DNA methylation analysis: choosing the right method. Biology 5, 3 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. de Oliveira, N. F. P., Coêlho, M. de C. & Viana Filho, J. M. C. ELISA analysis of global methylation levels. in Epigenetics Methods 83–92 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-819414-0.00005-7.

  67. Michels, K. B., Harris, H. R. & Barault, L. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS ONE 6, e25254 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Wilhelm-Benartzi, C. S. et al. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ. Health Perspect. 120, 296–302 (2012).

    PubMed  CAS  Google Scholar 

  69. Choi, S. H. et al. Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int. J. Cancer 125, 723–729 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Schumacher, A. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 34, 528–542 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Huang, Y.-W., Huang, T. H.-M. & Wang, L.-S. Profiling DNA methylomes from microarray to genome-scale sequencing. Technol. Cancer Res. Treat. 9, 139–147 (2010).

    PubMed  CAS  Google Scholar 

  72. Ku, J.L., Jeon, Y.K. & Park, J.G. Methylation-Specific PCR. in Methods in molecular biology (Clifton, N.J.) 791 23–32 (2011).

  73. Sandhu, J. et al. Determination of 5-methyl-2’-deoxycytidine in genomic DNA using high performance liquid chromatography-ultraviolet detection. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 877, 1957–1961 (2009).

    CAS  Google Scholar 

  74. Nakagawa, T., Wakui, M., Hayashida, T., Nishime, C. & Murata, M. Intensive optimization and evaluation of global DNA methylation quantification using LC-MS/MS. Anal. Bioanal. Chem. 411, 7221–7231 (2019).

    PubMed  CAS  Google Scholar 

  75. Chang, J.-S. et al. Ultra performance liquid chromatography–tandem mass spectrometry assay for the quantification of RNA and DNA methylation. J. Pharm. Biomed. Anal. 197, 113969 (2021).

    PubMed  CAS  Google Scholar 

  76. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Mehrmohamadi, M., Sepehri, M. H., Nazer, N. & Norouzi, M. R. A comparative overview of epigenomic profiling methods. Front. Cell Dev. Biol. 9, 714687 (2021).

    PubMed  PubMed Central  Google Scholar 

  78. Grewal, S. I. S. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    PubMed  CAS  Google Scholar 

  79. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC‐seq: a method for assaying chromatin accessibility genome‐wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    PubMed  Google Scholar 

  80. Spektor, R., Tippens, N. D., Mimoso, C. A. & Soloway, P. D. methyl-ATAC-seq measures DNA methylation at accessible chromatin. Genome Res. 29, 969–977 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Guerin, L. N., Barnett, K. R. & Hodges, E. Dual detection of chromatin accessibility and DNA methylation using ATAC-Me. Nat. Protoc. 16, 5377–5397 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Barnett, K. R. et al. ATAC-Me captures prolonged DNA methylation of dynamic chromatin accessibility loci during cell fate transitions. Mol. Cell 77, 1350–1364.e6 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Lhoumaud, P. et al. EpiMethylTag: simultaneous detection of ATAC-seq or ChIP-seq signals with DNA methylation. Genome Biol. 20, 248 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Breton-Larrivée, M., Elder, E. & McGraw, S. DNA methylation, environmental exposures and early embryo development. Anim. Reprod. 16, 465–474 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. Fang, X., Corrales, J., Thornton, C., Scheffler, B. E. & Willett, K. L. Global and gene specific DNA methylation changes during zebrafish development. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 166, 99–108 (2013).

    CAS  Google Scholar 

  86. Mhanni, A. A. & McGowan, R. A. Global changes in genomic methylation levels during early development of the zebrafish embryo. Dev. Genes Evol. 214, 412–417 (2004).

    PubMed  CAS  Google Scholar 

  87. MacKay, A. B., Mhanni, A. A., McGowan, R. A. & Krone, P. H. Immunological detection of changes in genomic DNA methylation during early zebrafish development. Genome 50, 778–785 (2007).

    PubMed  CAS  Google Scholar 

  88. Raddatz, G. et al. A chicken DNA methylation clock for the prediction of broiler health. Commun. Biol. 4, 76 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Li, S. et al. DNA methylation variation trends during the embryonic development of chicken. PLoS ONE 11, e0159230 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Matsuda, S. et al. Accurate estimation of 5-methylcytosine in mammalian mitochondrial DNA. Sci. Rep. 8, 5801 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Head, J. A. Patterns of DNA methylation in animals: an ecotoxicological perspective. Integr. Comp. Biol. 54, 77–86 (2014).

    PubMed  CAS  Google Scholar 

  92. Al Adhami, H. et al. A comparative methylome analysis reveals conservation and divergence of DNA methylation patterns and functions in vertebrates. BMC Biol. 20, 70 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Hu, Y. et al. Comparative analysis reveals epigenomic evolution related to species traits and genomic imprinting in mammals. Innovation 4, 100434 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Klughammer, J. et al. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat. Commun. 14, 232 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Chen, S. et al. Cross-species comparative DNA methylation reveals novel insights into complex trait genetics among cattle, sheep, and goats. Mol. Biol. Evol. 41, msae003 (2024).

  96. Enard, W. et al. Differences in DNA methylation patterns between humans and chimpanzees. Curr. Biol. 14, R148–R149 (2004).

    PubMed  CAS  Google Scholar 

  97. Ehrlich, M. DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics 14, 1141–1163 (2019).

    PubMed  PubMed Central  Google Scholar 

  98. Luo, C. et al. Clinical and biological significance of DNA methylation-driven differentially expressed genes in biochemical recurrence after radical prostatectomy. Front. Genet. 13, 1–14 (2022).

  99. Chamberlain, J. D. et al. Blood DNA methylation signatures of lifestyle exposures: tobacco and alcohol consumption. Clin. Epigenet 14, 155 (2022).

    CAS  Google Scholar 

  100. Liu, C. et al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry 23, 422–433 (2018).

    PubMed  CAS  Google Scholar 

  101. Zheng, Q., Wang, H., Yan, A., Yin, F. & Qiao, X. DNA methylation in alcohol use disorder. Int. J. Mol. Sci. 24, 10130 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Portales-Casamar, E. et al. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenet. Chromat. 9, 25 (2016).

    Google Scholar 

  103. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Arnold, C. What’s new in clinical CRISPR? Nat. Med. 27, 184–185 (2021).

    PubMed  CAS  Google Scholar 

  108. Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e17 (2021).

    PubMed  PubMed Central  Google Scholar 

  109. Pflueger, C., Swain, T. & Lister, R. Harnessing targeted DNA methylation and demethylation using dCas9. Essays Biochem. 63, 813–825 (2019).

    PubMed  CAS  Google Scholar 

  110. Liu, G. & Luan, Y. Identification of protein coding regions in the eukaryotic DNA sequences based on marple algorithm and wavelet packets transform. Abstr. Appl Anal. 2014, 1–14 (2014).

    CAS  Google Scholar 

  111. Baccarelli, A., Rienstra, M. & Benjamin, E. J. Cardiovascular epigenetics. Circ. Cardiovasc Genet. 3, 567–573 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Aquino, E. M. et al. Current understanding of DNA methylation and age-related disease. OBM Genet. 2, 1–1 (2018).

    Google Scholar 

  113. Bertozzi, T. M. & Ferguson-Smith, A. C. Metastable epialleles and their contribution to epigenetic inheritance in mammals. Semin Cell Dev. Biol. 97, 93–105 (2020).

    PubMed  CAS  Google Scholar 

  114. Dolinoy, D. C., Weinhouse, C., Jones, T. R., Rozek, L. S. & Jirtle, R. L. Variable histone modifications at the A vy metastable epiallele. Epigenetics 5, 637–644 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Li, J. et al. Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding. Nucleic Acids Res. 45, 12877–12887 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    PubMed  CAS  Google Scholar 

  117. Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

CAG was supported by Northern Ohio Alliance for Graduate Education and the Professoriate (NOA-AGEP) Summer Undergraduate Research Program (2018-2020), KAQ was supported by the Pediatrics Undergraduate Summer Internship Program (2020); The authors are grateful to Dr. Timothy Mead for his invaluable suggestions to the manuscript. Funding Our group is supported by R01 HL167159 (AMR), K08AA028845 (SMF) and R01HL126747 (MWJ).

Author information

Authors and Affiliations

Authors

Contributions

Caitlyn A. Gillespie, Amrin Chowdhury, and Katie A. Quinn contributed equally in searching for relevant papers and reading, extracting information, and writing and rewriting substantial segments of the paper. Michael W. Jenkins and Andrew M Rollins contributed by editing text and figures and making recommendations for overall organization. Michiko Watanabe initiated the review with SMF, coordinated the efforts of CAG, AC, KAQ, and pulled together the iterations of this manuscript. Stephanie M. Ford oversaw the entire process from beginning to end, from the initiation of the review to the collection of papers to the latest version of the paper submitted.

Corresponding author

Correspondence to Stephanie M. Ford.

Ethics declarations

Competing interests

We confirm that none of us nor any relatives have a financial or other interest in the subject/matter of this manuscript, which may be considered as constituting a real, potential or apparent conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillespie, C.A., Chowdhury, A., Quinn, K.A. et al. Fundamentals of DNA methylation in development. Pediatr Res 98, 458–469 (2025). https://doi.org/10.1038/s41390-024-03674-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03674-7

Search

Quick links