Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Promises and challenges of genomic newborn screening (NBS) – lessons from public health NBS programs

Abstract

Newborn screening (NBS) in the United States began in the 1960s to detect inborn errors of metabolism that benefited from presymptomatic treatment compared with treatment after the development of symptoms and diagnosis. Over time, it expanded to include endocrinological disorders, hematological disorders, immunodeficiencies, and other treatable diseases such as lysosomal storage diseases (LSD), cystic fibrosis, X-linked adrenoleukodystrophy, and spinal muscular dystrophy. This expansion has been driven by new technologies (e.g., tandem mass spectrometry) and novel treatments (e.g., enzyme replacement therapy and stem cell transplant for LSDs). Advances in next-generation gene sequencing (NGS) enable rapid identification of many additional conditions that might benefit from early presymptomatic intervention. We review the NGS technologies that evolved as diagnostic testing and suggest issues to be resolved before their potential application to screening the asymptomatic population. We illustrate the importance of selecting diseases to be screened and propose recommendations to follow when variants of uncertain significance are found. We address ethical issues around achieving equity in the sensitivity of genomic NBS, access to follow-up and management, especially for people from diverse backgrounds, and other considerations. Finally, we discuss the potential benefits and harms of genomic NBS to the overall health of children with monogenic diseases.

Impact

  • Genomic newborn screening programs are ongoing worldwide.

  • Public discussion is needed as to whether genomic newborn screening should be offered as a public health program and, if so, what conditions should be screened for.

  • Providers should understand that the sensitivity of genomic newborn screening is especially low for newborns from non-European populations.

  • Methylation, large structural variants and repeat expansion variants are not amenable to next-generation sequencing-based genomic newborn screening.

  • The article serves as a comprehensive guide to understanding issues that need to be solved before genomic newborn screening is implemented as a public health program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of conceptual illustrations of ROC.

Similar content being viewed by others

Data availability

Data sharing is not applicable as no raw data was generated as part of this review.

Notes

  1. Nussbaum, McInnes, and Willard, Thompson & Thompson Genetics in Medicine E-Book.

References

  1. Gelb, M. H. et al. Liquid Chromatography–Tandem Mass Spectrometry in Newborn Screening Laboratories. Int J. Neonatal Screen 8, 62 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Knox, W. E. An Evaluation Of The Treatment Of Phenylketonuria With Diets Low In Phenylalanine. Pediatrics 26, 1–11 (1960).

    Article  CAS  PubMed  Google Scholar 

  3. MacCready, R. A. & Hussey, M. G. Newborn Phenylketonuria Detection Program in Massachusetts. Am. J. Public Health Nations Health 54, 2075–2081 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Efron, M. L., Young, D., Moser, H. W. & MacCready, R. A. A Simple Chromatographic Screening Test for the Detection of Disorders of Amino Acid Metabolism: A Technic Using Whole Blood or Urine Collected on Filter Paper. N. Engl. J. Med. 270, 1378–1383 (1964).

    Article  CAS  PubMed  Google Scholar 

  5. Guthrie, R. & Susi, A. A Simple Phenylalanine Method For Detecting Phenylketonuria In Large Populations Of Newborn Infants. Pediatrics 32, 338–343 (1963).

    Article  CAS  PubMed  Google Scholar 

  6. Levy, H. L. 10 Neonatal screening for inborn errors of amino acid metabolism. Clin. Endocrinol. Metab. 3, 153–166 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. Levy, H. L. Genetic Screening. in Advances in Human Genetics (eds. Harris, H. & Hirschhorn, K.) 1–104 (Springer US, Boston, MA, 1973). https://doi.org/10.1007/978-1-4615-8261-8_1.

  8. Wilson, J. M. G. & Jungner, G. PRINCIPLES AND PRACTICE OF SCREENING FOR DISEASE. (1968).

  9. Committee for the Study of Inborn Errors of Metabolism. Genetic Screening Programs, Principles, and Research. (Natl. Acad. Sci., 1975).

  10. McCabe, L. L. & McCabe, E. R. B. Expanded Newborn Screening: Implications for Genomic Medicine. Annu. Rev. Med. 59, 163–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Screening, A. T. F. The Pediatrician and Genetic Screening (Every Pediatrician a Geneticist). Pediatrics 58, 757–764 (1976). on G.

    Article  Google Scholar 

  12. Schulze, A. et al. Expanded Newborn Screening for Inborn Errors of Metabolism by Electrospray Ionization-Tandem Mass Spectrometry: Results, Outcome, and Implications. PEDIATRICS 111, 1399–1406 (2003).

    Article  PubMed  Google Scholar 

  13. Frazier, D. M. et al. The tandem mass spectrometry newborn screening experience in North Carolina: 1997–2005. J. Inherit. Metab. Dis. 29, 76–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kwan, A. et al. Newborn Screening for Severe Combined Immunodeficiency in 11 Screening Programs in the United States. JAMA 312, 729–738 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marsden, D. & Levy, H. Newborn Screening of Lysosomal Storage Disorders. Clin. Chem. 56, 1071–1079 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Spacil, Z. et al. High-Throughput Assay of 9 Lysosomal Enzymes for Newborn Screening. Clin. Chem. 59, 502–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ream, M. A. et al. Evidence and recommendation for mucopolysaccharidosis type II newborn screening in the United States. Genet. Med. 25, 100330 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Kemper, A. R. et al. Evidence report: newborn screening for Pompe disease. Report Date: 03 June 2013 Accessed via HRSA.gov on October 30, 2024.

  19. Kemper, A. R., et al. Evidence-Based Review of Newborn Screening for Krabbe Disease Final Report: February 1, 2024. Accessed via HRSA.gov on October 30, 2024.

  20. Gutierrez-Mateo, C. et al. Development of a Multiplex Real-Time PCR Assay for the Newborn Screening of SCID, SMA, and XLA. Int. J. Neonatal Screen. 5, 39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sontag, M. K. et al. Infants with Congenital Disorders Identified Through Newborn Screening — United States, 2015–2017. MMWR Morb. Mortal. Wkly. Rep. 69, 1265–1268 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Watson, M. S., Mann, M. Y., Lloyd-Puryear, M. A., Rinaldo, P. & Howell, R. R. Executive Summary: Newborn screening: toward a uniform screening panel and system. Genet. Med. 8, S1–S11 (2006).

    Article  Google Scholar 

  23. Bick, S. L. et al. Estimating the sensitivity of genomic newborn screening for treatable inherited metabolic disorders. Genet. Med. 101284 https://doi.org/10.1016/j.gim.2024.101284. (2024)

  24. McCandless, S. E. & Wright, E. J. Mandatory newborn screening in the United States: History, current status, and existential challenges. Birth Defects Res. 112, 350–366 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Fabie, N. A. V., Pappas, K. B. & Feldman, G. L. The Current State of Newborn Screening in the United States. Pediatr. Clin. North Am. 66, 369–386 (2019).

    Article  PubMed  Google Scholar 

  26. Gelb, M. H. Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. Int. J. Neonatal Screen. 4, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Singh, S., Ojodu, J., Kemper, A. R., Lam, W. K. K. & Grosse, S. D. Implementation of Newborn Screening for Conditions in the United States First Recommended during 2010–2018. Int. J. Neonatal Screen. 9, 20 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Burton, B. K., Kronn, D. F., Hwu, W.-L. & Kishnani, P. S. The Initial Evaluation of Patients After Positive Newborn Screening: Recommended Algorithms Leading to a Confirmed Diagnosis of Pompe Disease. Pediatrics 140, S14–S23 (2017).

    Article  PubMed  Google Scholar 

  29. Kronn, D. F. et al. Management of Confirmed Newborn-Screened Patients With Pompe Disease Across the Disease Spectrum. Pediatrics 140, S24–S45 (2017).

    Article  PubMed  Google Scholar 

  30. Clarke, L. A. et al. Mucopolysaccharidosis Type I Newborn Screening: Best Practices for Diagnosis and Management. J. Pediatrics 182, 363–370 (2017).

    Article  Google Scholar 

  31. Thompson-Stone, R. et al. Consensus recommendations for the classification and long-term follow up of infants who screen positive for Krabbe Disease. Mol. Genet. Metab. https://doi.org/10.1016/j.ymgme.2021.03.016. (2021)

  32. Regelmann, M. O. et al. Adrenoleukodystrophy: Guidance for Adrenal Surveillance in Males Identified by Newborn Screen. J. Clin. Endocrinol. Metab. 103, 4324–4331 (2018).

    Article  PubMed  Google Scholar 

  33. Mallack, E. J. et al. MRI surveillance of boys with X-linked adrenoleukodystrophy identified by newborn screening: Meta-analysis and consensus guidelines. J. Inherit. Metab. Dis. 44, 728–739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Glascock, J. et al. Treatment Algorithm for Infants Diagnosed with Spinal Muscular Atrophy through Newborn Screening. JND 5, 145–158 (2018).

    Article  PubMed  Google Scholar 

  35. Glascock, J. et al. Revised Recommendations for the Treatment of Infants Diagnosed with Spinal Muscular Atrophy Via Newborn Screening Who Have 4 Copies of SMN2. J Neuromuscul. Dis. 7, 97–100.

  36. Engelen, M. et al. X-linked adrenoleukodystrophy in women: a cross-sectional cohort study. Brain 137, 693–706 (2014).

    Article  PubMed  Google Scholar 

  37. Habekost, C. T. et al. Neurological impairment among heterozygote women for X-linked Adrenoleukodystrophy: a case control study on a clinical, neurophysiological and biochemical characteristics. Orphanet J. Rare Dis. 9, 6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Videbæk, C., Melgaard, L., Lund, A. M. & Grønborg, S. W. Newborn screening for adrenoleukodystrophy: International experiences and challenges. Mol. Genet. Metab. 140, 107734 (2023).

    Article  PubMed  Google Scholar 

  39. Wang, M. Next-Generation Sequencing (NGS). in Clinical Molecular Diagnostics (eds. Pan, S. & Tang, J.) 305–327 (Springer, Singapore). https://doi.org/10.1007/978-981-16-1037-0_23., (2021).

  40. Manickam, K. et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 1–9 https://doi.org/10.1038/s41436-021-01242-6. (2021)

  41. Souche, E. et al. Recommendations for whole genome sequencing in diagnostics for rare diseases. Eur. J. Hum. Genet. 1–5 https://doi.org/10.1038/s41431-022-01113-x. (2022)

  42. Jobanputra, V. et al. Advancing access to genome sequencing for rare genetic disorders: recent progress and call to action. npj Genom. Med. 9, 1–3 (2024).

    Article  Google Scholar 

  43. Guo, F. et al. Evidence from 2100 index cases supports genome sequencing as a first-tier genetic test. Genet. Med. 26, 100995 (2024).

  44. Raca, G. et al. Points to consider in the detection of germline structural variants using next-generation sequencing: A statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100316 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Rehder, C. et al. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 23, 1399–1415 (2021).

    Article  PubMed  Google Scholar 

  46. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–423 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).

    Article  PubMed  Google Scholar 

  48. Ellingford, J. M. et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 14, 73 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Harrison, S. M. & Rehm, H. L. Is ‘likely pathogenic’ really 90% likely? Reclassification data in ClinVar. Genome Med. 11, 72 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen, E. et al. Rates and Classification of Variants of Uncertain Significance in Hereditary Disease Genetic Testing. JAMA Netw. Open 6, e2339571 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cristofoli, F. et al. Variant Selection and Interpretation: An Example of Modified VarSome Classifier of ACMG Guidelines in the Diagnostic Setting. Genes 12, 1885 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meng, L. et al. Evaluation of an automated genome interpretation model for rare disease routinely used in a clinical genetic laboratory. Genet. Med. 25, 100830 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Rockowitz, S. et al. Children’s rare disease cohorts: an integrative research and clinical genomics initiative. npj Genom. Med. 5, 1–12 (2020).

    Article  Google Scholar 

  55. Clark, M. M. et al. Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Sci. Transl. Med. 11, eaat6177 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee, C., Yen, H.-Y., Zhong, A. W. & Gao, H. Resolving misalignment interference for NGS-based clinical diagnostics. Hum. Genet 140, 477–492 (2021).

    Article  PubMed  Google Scholar 

  57. Ibanez, K. et al. Whole Genome Sequencing for Diagnosis of Neurological Repeat Expansion Disorders. http://biorxiv.org/lookup/doi/10.1101/2020.11.06.371716 (2020).

  58. Monk, D., Mackay, D. J. G., Eggermann, T., Maher, E. R. & Riccio, A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20, 235 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Nakabayashi, K. Chapter Seven - The Illumina Infinium methylation assay for genome-wide methylation analyses. in Epigenetics Methods (ed. Tollefsbol, T.) vol. 19 117–140 (Academic Press, 2020).

  60. Yao, Y. et al. A simple method for sequencing the whole human mitochondrial genome directly from samples and its application to genetic testing. Sci. Rep. 9, 17411 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lynch, F. et al. Australian Public Perspectives on Genomic Newborn Screening: Risks, Benefits, and Preferences for Implementation. Int. J. Neonatal Screen. 10, 6 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bovbjerg, M. L. Screening and Diagnostic Testing. (2020).

  63. Bodian, D. L. et al. Utility of whole-genome sequencing for detection of newborn screening disorders in a population cohort of 1,696 neonates. Genet. Med. 18, 221–230 (2016).

    Article  PubMed  Google Scholar 

  64. Adhikari, A. N. et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 26, 1392–1397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kiewiet, G. et al. Future of Dutch NGS-Based Newborn Screening: Exploring the Technical Possibilities and Assessment of a Variant Classification Strategy. Int. J. Neonatal Screen. 10, 20 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Minten, T. et al. Determining the characteristics of genetic disorders that predict inclusion in newborn genomic sequencing programs. Preprint at https://doi.org/10.1101/2024.03.24.24304797 (2024).

  67. Downie, L. et al. Gene selection for genomic newborn screening: moving towards consensus? Genet. Med. 101077 https://doi.org/10.1016/j.gim.2024.101077. (2024)

  68. Downie, L., Halliday, J., Lewis, S. & Amor, D. J. Principles of Genomic Newborn Screening Programs: A Systematic Review. JAMA Netw. Open 4, e2114336 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gold, N. B. et al. Perspectives of Rare Disease Experts on Newborn Genome Sequencing. JAMA Netw. Open 6, e2312231 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. DeCristo, D. M. et al. Actionability of commercial laboratory sequencing panels for newborn screening and the importance of transparency for parental decision-making. Genome Med. 13, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bick, D. et al. An online compendium of treatable genetic disorders. Am. J. Med. Genet. Part C: Semin. Med. Genet. 187, 48–54 (2021).

    Article  PubMed  Google Scholar 

  72. Owen, M. J. et al. An automated 13.5 h system for scalable diagnosis and acute management guidance for genetic diseases. Nat. Commun. 13, 4057 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bean, L. J. H. et al. DNA-based screening and personal health: a points to consider statement for individuals and health-care providers from the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 23, 979–988 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Bassaganyas, L. et al. Whole exome and whole genome sequencing with dried blood spot DNA without whole genome amplification. Hum. Mutat. 39, 167–171 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Ding, Y. et al. Scalable, high quality, whole genome sequencing from archived, newborn, dried blood spots. npj Genom. Med. 8, 1–9 (2023).

    Article  Google Scholar 

  76. Green, E. D. et al. Strategic vision for improving human health at The Forefront of Genomics. Nature 586, 683–693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Berg, J. S. et al. Newborn Sequencing in Genomic Medicine and Public Health. Pediatrics 139, e20162252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stark, Z. & Scott, R. H. Genomic newborn screening for rare diseases. Nat Rev Genet 1–12 https://doi.org/10.1038/s41576-023-00621-w. (2023)

  79. Bros-Facer, V., Taylor, S. & Patch, C. Next-generation sequencing-based newborn screening initiatives in Europe: an overview. Rare Dis Orphan Drugs J 2, (2023).

  80. Ceyhan-Birsoy, O. et al. Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. Am. J. Hum. Genet. 104, 76–93 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Green, R. C. et al. Actionability of unanticipated monogenic disease risks in newborn genomic screening: Findings from the BabySeq Project. Am. J. Hum. Genet. 110, 1034–1045 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roman, T. S. et al. Genomic Sequencing for Newborn Screening: Results of the NC NEXUS Project. Am. J. Hum. Genet. 107, 596–611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bailey, D. B. et al. Early Check: translational science at the intersection of public health and newborn screening. BMC Pediatr. 19, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kingsmore, S. F. et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 109, 1605–1619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schleit, J. et al. P146: BeginNGS, an artificial intelligence-enabled genome sequencing system for newborn screening of 409 childhood genetic disorders*. Genet. Med. Open 2, 101043 (2024).

    Article  Google Scholar 

  86. Chung, W. et al. O35: Feasibility of expanded newborn screening using genome sequencing for early actionable conditions in a diverse city. Genet. Med. Open 2, (2024).

  87. Lunke, S. et al. Prospective cohort study of genomic newborn screening: BabyScreen+ pilot study protocol. BMJ Open 14, e081426 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Network, W. and C. H. NewbornsInSA Research Study. Women’s and Children’s Hospital https://www.wch.sa.gov.au/research/newbornsinsa-research-study.

  89. Ferlini, A. et al. Rare diseases’ genetic newborn screening as the gateway to future genomic medicine: the Screen4Care EU-IMI project. Orphanet J. Rare Dis. 18, 310 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. https://www.klinikum.uni-heidelberg.de/en/new-lives-genomic-newborn-screening-programs Universitätsklinikum Heidelberg: NEW_LIVES: Genomic Newborn Screening Programs.

  91. Horton, R. et al. Challenges of using whole genome sequencing in population newborn screening. BMJ e077060 https://doi.org/10.1136/bmj-2023-077060. (2024)

  92. Pichini, A. et al. Developing a National Newborn Genomes Program: An Approach Driven by Ethics, Engagement and Co-design. Front Genet 13, 866168 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dangouloff, T. et al. Baby detect: Universal genomic newborn screening for early, treatable, and severe conditions. J. Neurological Sci. 455, 121259 (2023).

    Article  Google Scholar 

  94. Αρχική. First Steps https://www.firststeps-ngs.gr.

  95. Chen, T. et al. Genomic Sequencing as a First-Tier Screening Test and Outcomes of Newborn Screening. JAMA Netw. Open 6, e2331162 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Marom, D. et al. National Rapid Genome Sequencing in Neonatal Intensive Care. JAMA Netw. Open 7, e240146 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Seither, K., Thompson, W. & Suhrie, K. A Practical Guide to Whole Genome Sequencing in the NICU. NeoReviews 25, e139–e150 (2024).

    Article  PubMed  Google Scholar 

  98. van der Sluijs, P. J. et al. Putting genome-wide sequencing in neonates into perspective. Genet. Med. 21, 1074–1082 (2019).

    Article  PubMed  Google Scholar 

  99. Miller, D. T. et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100866 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gregg, A. R. et al. Screening for autosomal recessive and X-linked conditions during pregnancy and preconception: a practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 23, 1793–1806 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. King, J. S. & Smith, M. E. Whole-Genome Screening of Newborns? The Constitutional Boundaries of State Newborn Screening Programs. Pediatrics 137, S8–S15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Stenton, S. L., Campagna, M., Philippakis, A., O’Donnell-Luria, A. & Gelb, M. H. First-tier next-generation sequencing for newborn screening: An important role for biochemical second-tier testing. Genet. Med. Open 1, 100821 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fullerton, S. M., Phil, D. & Brothers, K. B. Expanding Applications of Clinical Genetic Testing — Ethical Challenges. N Engl J Med. (2024).

  104. Vaghela, S., Tanni, K. A., Banerjee, G. & Sikirica, V. A systematic review of real-world evidence (RWE) supportive of new drug and biologic license application approvals in rare diseases. Orphanet J. Rare Dis. 19, 117 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Therrell Jr, B. L. et al. Committee report: Considerations and recommendations for national guidance regarding the retention and use of residual dried blood spot specimens after newborn screening. Genet. Med. 13, 621–624 (2011).

    Article  PubMed  Google Scholar 

  106. DiFilippo, D. Civil rights group sues New Jersey to stop secret storage, use of baby blood spots • New Jersey Monitor. New Jersey Monitor https://newjerseymonitor.com/2023/11/02/civil-rights-group-sues-new-jersey-to-stop-secret-storage-use-of-baby-blood-spots/ (2023).

  107. IV, R. H., Choudhury, S. & Shah, A. Newborn Screening Blood Spot Retention And Reuse: A Clash Of Public Health And Privacy Interests. Health Affairs Forefront https://doi.org/10.1377/forefront.20221004.177058.

  108. Faden, R. A survey to evaluate parental consent as public policy for neonatal screening. https://ajph.aphapublications.org/doi/epdf/10.2105/AJPH.72.12.1347.

  109. Faden, R. R., Holtzman, N. A. & Chwalow, A. J. Parental rights, child welfare, and public health: the case of PKU screening. Am. J. Public Health 72, 1396–1400 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wonkam, A. Sequence three million genomes across Africa. Nature 590, 209–211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Currier, R. J. Newborn Screening Is on a Collision Course with Public Health Ethics. Int. J. Neonatal Screen. 8, 51 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wojcik, M. H. et al. Rare Diseases, Common Barriers: Disparities in Pediatric Clinical Genetics Outcomes. Pediatr. Res. 93, 110–117 (2023).

    Article  PubMed  Google Scholar 

  113. Bayefsky, M. J., Saylor, K. W. & Berkman, B. E. Parental Consent for the Use of Residual Newborn Screening Bloodspots: Respecting Individual Liberty vs Ensuring Public Health. JAMA 314, 21–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Suter, S. M. Did you give the government your baby's DNA? Rethinking consent in newborn screening. Minn. JL Sci. & Tech. 15, 729 (2014).

  115. Ram, N. America’s Hidden National DNA Database. Tex. L. Rev. 100, 1253 (2021).

  116. Hartman, D., Drummer, O., Eckhoff, C., Scheffer, J. W. & Stringer, P. The contribution of DNA to the disaster victim identification (DVI) effort. Forensic Sci. Int. 205, 52–58 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Authors attest to no funding support related to this review.

Author information

Authors and Affiliations

Authors

Contributions

All authors substantially contributed to the conception of the review, and involved in drafting revising and final approval of the published manuscript.

Corresponding author

Correspondence to Mari Mori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Patient Consent

Patient consent was not required for this review

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, M., Chaudhari, B.P., Ream, M.A. et al. Promises and challenges of genomic newborn screening (NBS) – lessons from public health NBS programs. Pediatr Res 97, 1327–1336 (2025). https://doi.org/10.1038/s41390-024-03689-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03689-0

This article is cited by

Search

Quick links