Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wearable biosensors for pediatric hospitals: a scoping review

Abstract

As wearable biosensors are increasingly used in healthcare settings, this review aimed to identify the types of wearable biosensors used for neonate and pediatric patients and how these biosensors were clinically evaluated. A literature search was conducted using PubMed, CINAHL, Embase, Web of Science, and Cochrane. The studies published between January 2010 and February 2024 were included. Descriptive statistics were used to present counts and percentages of types, locations, clinical evaluation methods, and their results. Seventy-nine studies were included. 104 wearable sensors and 40 devices were identified. The most common type of biosensor was optoelectrical sensors (n = 40, 38.5%), and used to measure heart rate (n = 22, 19.0%). The clinical evaluation was tested by a combination of validity (n = 68, 86.1%) and reliability (n = 14, 17.7%). Only two-thirds of the wearable devices were validated or reported acceptable reliability. The majority of the biosensor studies (n = 51, 64.5%) did not report any complications related to wearable biosensors. The current literature has gaps regarding clinical evaluation and safety of wearable biosensor devices with interchangeable use of validity and reliability terms. There is a lack of comprehensive reporting on complications, highlighting the need for standardized guidelines in the clinical evaluation of biosensor medical devices.

Impact

  • The most common types of biosensors in pediatric settings were optoelectrical sensors and electrical sensors.

  • Only two-thirds of the wearable devices were validated or reported acceptable reliability, and more than half of the biosensor studies did not report whether they assessed any complications related to wearable biosensors.

  • This review discovered significant gaps in safety and clinical validation reporting, emphasizing the need for standardized guidelines.

  • The findings advocate for improved reporting clinical validation processes to enhance the safety of wearable biosensors in pediatric care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Locations where biosensors were placed (n = 106 locations).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author [AH] upon reasonable request.

References

  1. Virginia Anikwe, C. et al. Mobile and wearable sensors for data-driven health monitoring system: state-of-the-art and future prospect. Expert Syst. Appl. 202, 117362 (2022).

    Article  Google Scholar 

  2. Bandodkar, A. J., Jeerapan, I. & Wang, J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016).

    Article  CAS  Google Scholar 

  3. Takashima, M. et al. Pediatric invasive device utility and harm: a multi-site point prevalence survey. Pediatr. Res. 96, 148–158 (2024).

  4. Alhaddad, A. Y. et al. Sense and learn: recent advances in wearable sensing and machine learning for blood glucose monitoring and trend-detection. Front Bioeng. Biotechnol. 10, 876672 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Un, K.-C. et al. Observational study on wearable biosensors and machine learning-based remote monitoring of COVID-19 patients. Sci. Rep. 11, 4388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Downey, C., Randell, R., Brown, J. & Jayne, D. G. Continuous versus intermittent vital signs monitoring using a wearable, wireless patch in patients admitted to surgical wards: pilot cluster randomized controlled trial. J. Med. Internet Res. 20, e10802 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weller, R. S., Foard, K. L. & Harwood, T. N. Evaluation of a wireless, portable, wearable multi-parameter vital signs monitor in hospitalized neurological and neurosurgical patients. J. Clin. Monit. Comput. 32, 945–951 (2018).

    Article  PubMed  Google Scholar 

  8. Rasooly, I. R. et al. Physiologic monitor alarm burden and nurses’ subjective workload in a children’s hospital. Hosp. Pediatr. 11, 703–710 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. van Rossum, M. C. et al. Adaptive threshold-based alarm strategies for continuous vital signs monitoring. J. Clin. Monit. Comput. 36, 407–417 (2022).

    Article  PubMed  Google Scholar 

  10. Downey, C. L., Chapman, S., Randell, R., Brown, J. M. & Jayne, D. G. The impact of continuous versus intermittent vital signs monitoring in hospitals: a systematic review and narrative synthesis. Int J. Nurs. Stud. 84, 19–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Hravnak, M. et al. A call to alarms: current state and future directions in the battle against alarm fatigue. J. Electrocardiol. 51, S44–s48 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alfirevic, Z., Devane, D. & Gyte, G. M. Continuous Cardiotocography (Ctg) as a Form of Electronic Fetal Monitoring (Efm) for Fetal Assessment During Labour. Cochrane Database Syst. Rev., Cd006066 (2013).

  13. Clark, E. et al. Reducing risk of harm from extravasation: a 3-tiered evidence-based list of pediatric peripheral intravenous infusates. J. Infus. Nurs. 36, 37–45 (2013).

    Article  PubMed  Google Scholar 

  14. Rens, M. v., Hugill, K. & Francia, A. L. V. A new approach for early recognition of Peripheral Intravenous (Piv) infiltration: a pilot appraisal of a sensor technology in a neonatal population. Vasc. Access (2019).

  15. Zhu, P., Peng, H. & Rwei, A. Y. Flexible, wearable biosensors for digital health. Med. Nov. Technol. Devices 14, 100118 (2022).

    Article  Google Scholar 

  16. Haleem, A., Javaid, M., Singh, R. P., Suman, R. & Rab, S. Biosensors applications in medical field: a brief review. Sens. Int. 2, 100100 (2021).

    Article  Google Scholar 

  17. Hassan, R. Y. A. Advances in electrochemical nano-biosensors for biomedical and environmental applications: from current work to future perspectives. Sensors 22, 7539 (2022).

  18. Saikia, D. & Mahanta, B. Cardiovascular and respiratory physiology in children. Indian J. Anaesth. 63, 690–697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tandon, A. & de Ferranti, S. D. Wearable biosensors in pediatric cardiovascular disease. Circulation 140, 350–352 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Rwei, A. Y. et al. A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proc. Natl Acad. Sci. USA 117, 31674–31684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schaefer, S. E., Van Loan, M. & German, J. B. A feasibility study of wearable activity monitors for pre-adolescent school-age children. Prev. Chronic Dis. 11, E85 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mack, I. et al. Wearable technologies for pediatric patients with surgical infections-more than counting steps? Biosensors 12, 634 (2022).

  23. Sampson, M. et al. Feasibility of continuous temperature monitoring in pediatric immunocompromised patients: a pilot study. Pediatr. Blood Cancer 66, e27723 (2019).

    Article  PubMed  Google Scholar 

  24. Tricco, A. C. et al. Prisma Extension for Scoping Reviews (Prisma-SCR): Checklist and explanation. Ann. Intern. Med. 169, 467–473 (2018).

    Article  PubMed  Google Scholar 

  25. Waffenschmidt, S., Knelangen, M., Sieben, W., Bühn, S. & Pieper, D. Single screening versus conventional double screening for study selection in systematic reviews: a methodological systematic review. BMC Med. Res. Methodol. 19, 132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Giorgi, G. & Tonello, S. Wearable biosensor standardization: how to make them smarter. Standards 2, 366–384 (2022).

    Article  Google Scholar 

  27. Microsoft Corporation. Microsoft Excel, https://office.microsoft.com/excel (2021).

  28. Ali, A. et al. Smart detecting and versatile wearable electrical sensing mediums for healthcare. Sensors 23, 6586 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Olde Rikkert, M. G. M. et al. Validity, reliability, and feasibility of clinical staging scales in dementia: a systematic review. Am. J. Alzheimer’s. Dis. Other Dement. 26, 357–365 (2011).

    Article  Google Scholar 

  30. Zhou, L., Guess, M., Kim, K. R. & Yeo, W.-H. Skin-interfacing wearable biosensors for smart health monitoring of infants and neonates. Commun. Mater. 5, 72 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Senechal, E. et al. Wireless monitoring devices in hospitalized children: a scoping review. Eur. J. Pediatr. 182, 1991–2003 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Grubb, M. R. et al. Forehead reflectance photoplethysmography to monitor heart rate: preliminary results from neonatal patients. Physiol. Meas. 35, 881–893 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Herbert, C. E. et al. Use of near-Infrared Spectroscopy to monitor lower extremity perfusion in pediatric patients undergoing cardiac catheterization. Pediatr. Cardiol. 40, 1523–1529 (2019).

    Article  PubMed  Google Scholar 

  34. Vijayan, V., Connolly, J. P., Condell, J., McKelvey, N. & Gardiner, P. Review of wearable devices and data collection considerations for connected health. Sensors 21, 5589 (2021).

  35. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Section on Cardiology, C. S. et al. Off-label use of medical devices in children. Pediatrics 139, e20163439 (2017).

  37. Hofhuizen, C. M. et al. Continuous non-invasive finger arterial pressure monitoring reflects intra-arterial pressure changes in children undergoing cardiac surgery. Br. J. Anaesth. 105, 493–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Sato, S. et al. Assessment of a new piezoelectric transducer sensor for noninvasive cardiorespiratory monitoring of newborn infants in the Nicu. Neonatology 98, 179–190 (2010).

    Article  PubMed  Google Scholar 

  39. Mann, C. et al. Can we improve delivery room monitoring for newborns? A novel photoplethysmographic heart rate monitor evaluated among stable Nicu infants. Arch. Dis. Child.: Fetal Neonatal Ed. 96, Fa2–Fa3 (2011).

    Article  Google Scholar 

  40. Sato, H. & Hirai, T. A preliminary study describing body position in daily life in children with severe cerebral palsy using a wearable device. Disabil. Rehabil. 33, 2529–2534 (2011).

    Article  PubMed  Google Scholar 

  41. May, J. M., Kyriacou, P. A., Honsel, M. & Petros, A. J. Photoplethysmographic and Spo(2) Readings from the neonatal anterior Fontanelle: A case study. Annu Int. Conf. IEEE Eng. Med Biol. Soc. 2012, 1619–1622 (2012).

    CAS  PubMed  Google Scholar 

  42. Dewhirst, E. et al. Accuracy of the Cnap monitor, a noninvasive continuous blood pressure device, in providing beat-to-beat blood pressure readings in the prone position. J. Clin. Anesth. 25, 309–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Dix, L. M., van Bel, F., Baerts, W. & Lemmers, P. M. Comparing near-Infrared Spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate. Pediatr. Res. 74, 557–563 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Kako, H., Corridore, M., Rice, J. & Tobias, J. D. Accuracy of the Cnap™ Monitor, a noninvasive continuous blood pressure device, in providing beat-to-beat blood pressure readings in pediatric patients weighing 20-40 kilograms. Paediatr. Anaesth. 23, 989–993 (2013).

    Article  PubMed  Google Scholar 

  45. Szczapa, T. J. et al. A Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of an absolute and a relative trending Nirs Oximeters. J. Perinatal Med. 41 (2013).

  46. Yadlapati, A., Grogan, T., Elashoff, D. & Kelly, R. B. Correlation of a novel noninvasive tissue oxygen saturation monitor to serum central venous oxygen saturation in pediatric patients with postoperative congenital cyanotic heart disease. J. Extra Corpor. Technol. 45, 40–45 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chari, G. et al. Continuous EEG monitoring in preterm neonates using Microeeg® - a New Portable EEG device. Epilepsy Curr. 14, 333–334 (2014).

    Google Scholar 

  48. Schneider, A. et al. Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants. Acta Paediatr. Int. J. Paediatr. 103, 934–938 (2014).

    Article  CAS  Google Scholar 

  49. Bennet, L. et al. Comparison of sleep states using continuous cerebral bedside monitoring of real-time EEG and polysomnography in term infants. Sleep. Biol. Rhythms 13, 29–30 (2015).

    Google Scholar 

  50. Butruille, L. et al. Development of a pain monitoring device focused on newborn infant applications: The NeoDoloris project. Innov. Res. Biomed. Eng. 36, 80–85 (2015).

  51. Hyttel-Sorensen, S. et al. Cerebral near Infrared Spectroscopy oximetry in extremely preterm infants: Phase II randomised clinical trial. BMJ 350, g7635 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee, J. H. et al. Prediction of fluid responsiveness using a non-invasive cardiac output monitor in children undergoing cardiac surgery. Br. J. Anaesth. 115, 38–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, K. M. et al. Long-term tolerability of capnography and respiratory inductance plethysmography for respiratory monitoring in pediatric patients treated with patient-controlled analgesia. Paediatr. Anaesth. 25, 1054–1059 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nizami, S., Greenwood, K., Barrowman, N. & Harrold, J. Performance evaluation of new-generation pulse oximeters in the NICU: Observational study. Cardiovasc. Eng. Technol. 6, 383–391 (2015).

    Article  PubMed  Google Scholar 

  55. Sabesan, S. et al. Improving long-term management of epilepsy using wearable multi-modal seizure detection system. Epilepsy Curr. 15, 273 (2015).

    Google Scholar 

  56. Torigoe, T., Sato, S., Nagayama, Y., Sato, T. & Yamazaki, H. Influence of patent ductus arteriosus and ventilators on electrical velocimetry for measuring cardiac output in very-low/low birth weight infants. J. Perinatol. 35, 485–489 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Vergnaud, E. et al. Noninvasive cardiac output measurement using bioreactance in postoperative pediatric patients. Paediatr. Anaesth. 25, 160–166 (2015).

    Article  PubMed  Google Scholar 

  58. Erdoğan, S., Oto, A. & Boşnak, M. Reliability of cerebral oximeter in non-invasive diagnosis and follow-up of hypercapnia. Turk. J. Pediatr. 58, 389–394 (2016).

    Article  PubMed  Google Scholar 

  59. Ibrahim, Z. H. et al. Wireless multichannel electroencephalography in the newborn. J. Neonatal-Perinat. Med. 9, 341–348 (2016).

    Article  CAS  Google Scholar 

  60. Evron, S. et al. Evaluation of the temple touch pro, a novel noninvasive core-tempererature monitoring system. Anesth. Analg.125, 103–109 (2017).

    Article  PubMed  Google Scholar 

  61. Karaca-Altintas, Y. et al. Impedance Cardiography by Physioflow® for non-invasive cardiac output monitoring: a comparison with trans-thoracic Echocardiography in pediatric intensive care patients. Ann. Intensive Care 7, 79–80 (2017).

    Google Scholar 

  62. Rescoe, E. et al. Cerebral near-Infrared Spectroscopy insensitively detects low cerebral venous oxygen saturations after Stage 1 Palliation. J. Thorac. Cardiovasc. Surg. 154, 1056–1062 (2017).

    Article  PubMed  Google Scholar 

  63. Robinson, J. & Snyder, C. Ambulatory Arrhythmia detection with Zio® Xt patch in pediatric patients. Cardiol. Young 27, S205 (2017).

    Google Scholar 

  64. Tirotta, C. F. et al. Non-invasive cardiac output monitor validation study in pediatric cardiac surgery patients. J. Clin. Anesth. 38, 129–132 (2017).

    Article  PubMed  Google Scholar 

  65. Beck, R., Milella, L. & Labellarte, C. Continuous non-invasive measurement of stroke volume and cardiac index in infants and children: comparison of impedance Cardiography Nicas® Vs Cardioq® Method. Clin. Ter. 169, e110–e113 (2018).

    CAS  PubMed  Google Scholar 

  66. De Liso, P. et al. Motor seizure detection and alerting with a wearable device. Epilepsia 59, S270 (2018).

    Google Scholar 

  67. Fule, B., Macdonald, A., Sultan, S., Loughead, R. & Duncan, H. Wireless respiratory rate measurement has better accuracy in older children. Pediatr. Crit. Care Med. 19, 66–67 (2018).

    Article  Google Scholar 

  68. Mony, P. K. et al. Remote biomonitoring of temperatures in mothers and newborns: design, development and testing of a wearable sensor device in a tertiary-care hospital in Southern India. BMJ Innov. 4, 60–67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Raj, A., Preejith, S. P., Raja, V. S., Joseph, J. & Sivaprakasam, M. Clinical validation of a wearable respiratory rate device for neonatal monitoring. Annu. Int. Conf. IEEE Eng. Med Biol. Soc. 2018, 1628–1631 (2018).

    Google Scholar 

  70. Rao, S., Thankachan, P., Amrutur, B., Washington, M. & Mony, P. K. Continuous, real-time monitoring of neonatal position and temperature during Kangaroo mother care using a wearable sensor: a techno-feasibility pilot study. Pilot Feasibility Stud. 4, 99 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Umehara, N. & Kusakawa, I. Noninvasive Hemoglobin (Sphb) with Spo2 measurement as a new monitoring device for pulmonary and hemodynamic condition in neonates or infants below three kg. Pediatr. Pulmonol. 53, S150–S151 (2018).

    Google Scholar 

  72. Garbern, S. C. et al. Validation of a wearable biosensor device for vital sign monitoring in Septic Emergency Department patients in Rwanda. Digit. Health 5, 2055207619879349 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Harris, B. U. et al. Accuracy of a portable pulse oximeter in monitoring hypoxemic infants with cyanotic heart disease. Cardiol. Young 29, 1025–1029 (2019).

    Article  PubMed  Google Scholar 

  74. Hausmann, J., Manthiram, K., Anderson, E., Lapidus, S. & Dedeoglu, F. Feasibility of using wearable thermometers to improve diagnosis and treatment of PFAPA. Pediatr. Rheumatol. 17, 73 (2019).

  75. Macinnes, M., Martin, N., Fulton, H. & McLeod, K. A. Comparison of a smartphone-based ECG recording system with a standard cardiac event monitor in the investigation of palpitations in children. Arch. Dis. Child. 104, 43–47 (2019).

    Article  PubMed  Google Scholar 

  76. Pradhan, S., Robinson, J. A., Shivapour, J. K. & Snyder, C. S. Ambulatory Arrhythmia detection with Zio® Xt patch in pediatric patients: a comparison of devices. Pediatr. Cardiol. 40, 921–924 (2019).

    Article  PubMed  Google Scholar 

  77. Rauf, A., Joshi, R. K., Aggarwal, N. & Joshi, R. Postoperative cerebral oximetry monitoring helps in early detection of diminished flow in Blalock-Taussig Shunt. Ann. Pediatr. Cardiol. 12, 169–171 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tanigasalam, V., Vishnu Bhat, B., Adhisivam, B., Balachander, B. & Kumar, H. Hypothermia detection in low birth weight neonates using a novel bracelet device. J. Matern. Fetal Neonatal Med. 32, 2653–2656 (2019).

    Article  PubMed  Google Scholar 

  79. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kelleher, S., Cravero, J., Baumer, A., Bertisch, S. M. & Kossowsky, J. Monitoring sleep, activity and function using wearable devices in post-surgical patients: a pilot study. Anesth. Analges. 130, 64–65 (2020).

    Google Scholar 

  81. Kim, Y. S. et al. Wireless, skin-like membrane electronics with multifunctional ergonomic sensors for enhanced pediatric care. IEEE Trans. Biomed. Eng. 67, 2159–2165 (2020).

    Article  PubMed  Google Scholar 

  82. Muppidi, P. R. et al. Tempwatch for monitoring hypothermia in very-low-birth-weight infants: a randomized controlled trial. Perinatology 20, 108–113 (2020).

    Google Scholar 

  83. Vaughn, J. et al. Mobile health technology for pediatric symptom monitoring: a feasibility study. Nurs. Res. 69, 142–148 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cesar, G., Buster, T., Patten, A., Perlaki, B. & Burnfield, J. Reliability and accuracy of commercially-available wrist step-count device for children and adolescents with neurologic-induced gait impairment. Arch. Phys. Med. Rehabil, 102, e14 (2021).

    Article  Google Scholar 

  85. Harer, M. W., Adegboro, C. O., Richard, L. J. & McAdams, R. M. Non-invasive continuous renal tissue oxygenation monitoring to identify preterm neonates at risk for acute kidney injury. Pediatr. Nephrol. 36, 1617–1625 (2021).

    Article  PubMed  Google Scholar 

  86. Henry, C. et al. Accurate neonatal heart rate monitoring using a new wireless, cap-mounted device. Acta Paediatr. 110, 72–78 (2021).

    Article  PubMed  Google Scholar 

  87. Koenig, C., Ammann, R. A., Kuehni, C. E., Roessler, J. & Brack, E. Continuous recording of vital signs with a wearable device in pediatric patients undergoing chemotherapy for cancer-an operational feasibility study. Support Care Cancer 29, 5283–5292 (2021).

    PubMed  PubMed Central  Google Scholar 

  88. Mansfield, R., Sathiyamurthy, S., Lees, C. & Banerjee, J. Noninvasive continuous stroke volume monitoring in term and late preterm neonates using whole body electrical bioimpedance: a clinical validation study. Arch. Dis. Child. 106, A293–A294 (2021).

    Google Scholar 

  89. McCarthy, K. N. et al. Feasibility of non-invasive cardiac output monitoring at birth using electrical bioreactance in term infants. Arch. Dis. Child Fetal Neonatal Ed. 106, 431–434 (2021).

    Article  PubMed  Google Scholar 

  90. Nash, D., Janson, C. M., Iyer, V. R., Jones, A. & Shah, M. J. B-Po04-193 but for the blind spot: accuracy and diagnostic performance of the Apple Watch™ cardiac features in pediatric patients. Heart Rhythm 18, S357–S358 (2021).

    Article  Google Scholar 

  91. Noh, C. Y. K., Van, K. & Chock, V. Near-infrared spectroscopy as a hemodynamic monitoring tool during neonatal extracorporeal life support. ASAIO J. 67, 6–7 (2021).

    Google Scholar 

  92. Paech, C. et al. Accuracy of the Apple watch single-lead ECG recordings in pre-term neonates. Cardiol Young 32, 1633–1637 (2021).

  93. Piantino, J. A. et al. Simultaneous heart rate variability and electroencephalographic monitoring in children in the Emergency Department. J. Child Adolesc. Trauma 14, 165–175 (2021).

    Article  PubMed  Google Scholar 

  94. Ranta, J. et al. An openly available wearable, a diaper cover, monitors infant’s respiration and position during rest and sleep. Acta Paediatr. 110, 2766–2771 (2021).

    Article  PubMed  Google Scholar 

  95. Azad, M., Bisht, S. S., Tyagi, A. & Jaipal, M. L. The role of a neonatal hypothermia alert device in promoting weight gain in LBW infants. J. Matern. Fetal Neonatal Med. 35, 2992–2994 (2022).

    Article  PubMed  Google Scholar 

  96. Choi, Y. & Ahn, H. Y. Axillary temperature measurements based on smart wearable thermometers in South Korean children: comparison with tympanic temperature measurements. Child Health Nurs. Res. 28, 62–69 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ghidini, F. et al. Can real-time near-infrared Spectroscopy monitoring detect graft venous thrombosis after pediatric kidney transplantation? Pediatr. Transpl. 26, e14211 (2022).

    Article  Google Scholar 

  98. Jamro, S. et al. Comparison between temperature watch and mercury thermometer in monitoring temperature of low-birth-weight newborns at Kangaroo Mother Ward Children Hospital Chandaka Medical College Larkana. Med. Forum Month. 33, 29–32 (2022).

    Google Scholar 

  99. Keerthy, S. & Nagesh, N. K. Efficacious continuous monitoring of infants using wireless remote monitoring technology. Indian J. Pediatr. 89, 771–775 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lee, J. H. et al. Validation of the Masimo O3™ regional oximetry device in pediatric patients undergoing cardiac surgery. J. Clin. Monit. Comput 36, 1703–1709 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Owusu-Bediako, K., Bekiroglu, I., Rice-Weimer, J., Murillo-Deluquez, M. & Tobias, J. D. Noninvasive blood pressure measurement using the NICCI monitor in adolescents during intraoperative anesthetic care. Cardiol. Res. 13, 154–161 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Aggarwal, R., Gunaseelan, V., Manual, D., Sanker, M. & Prabaaker, S. Clinical evaluation of a wireless device for monitoring vitals in newborn babies. Indian J. Pediatr. 90, 1110–1115 (2023).

    Article  PubMed  Google Scholar 

  103. Chen, H. et al. Neonatal seizure detection using a wearable multi-sensor system. Bioengineering 10, 658 (2023).

  104. Nantume, A. et al. Feasibility, performance and acceptability of an innovative vital signs monitor for sick newborns in Western Kenya: A mixed-methods study. Digit Health 9, 20552076231182799 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Nemeth, M. et al. Evaluation of the non-invasive temple touch pro temperature monitoring system compared with oesophageal temperature in Paediatric Anaesthesia (Peter Pan): A prospective observational study. Eur. J. Anaesthesiol. 40, 198–207 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Pätz, C. et al. Accuracy of the Apple Watch oxygen saturation measurement in adults and children with congenital heart disease. Pediatr. Cardiol. 44, 333–343 (2023).

    Article  PubMed  Google Scholar 

  107. Proost, R., Macea, J., Lagae, L., Van Paesschen, W. & Jansen, K. Wearable detection of tonic seizures in childhood epilepsy: an exploratory cohort study. Epilepsia 64, 3013–3024 (2023).

    Article  PubMed  Google Scholar 

  108. Radeschi, D. J. et al. Comparison of wired and wireless heart rate monitoring in the neonatal Intensive Care Unit. Annu Int. Conf. IEEE Eng. Med. Biol. Soc. 2023, 1–4 (2023).

    PubMed  Google Scholar 

  109. Zahedivash, A. et al. Utility of smart watches for identifying Arrhythmias in children. Commun. Med. 3, 167 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Koenig, C. et al. Continuous timely monitoring of core temperature with two wearable devices in pediatric patients undergoing Chemotherapy for cancer - a comparison study. Support Care Cancer 32, 188 (2024).

    PubMed  PubMed Central  Google Scholar 

  111. Nhan, L. N. T. et al. Feasibility of wearable monitors to detect heart rate variability in children with hand, foot and mouth disease. BMC Infect. Dis. 24, 205 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Imbiriba, T., Demirkaya, A., Singh, A., Erdogmus, D. & Goodwin, M. S. Wearable biosensing to predict imminent aggressive behavior in psychiatric inpatient youths with autism. JAMA Netw. Open 6, e2348898 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge and thank the Universit of Queensland Librarian for their assistance with the search strategy.

Author information

Authors and Affiliations

Authors

Contributions

A.H. investigation, formal analysis, writing -original draft preparation; M.T. Conceptualization, investigation, formal analysis, writing -original draft preparation. S.H. investigation, formal analysis, writing – review and editing. L.L. investigation, writing – review, and editing. M.D. investigation, writing – review and editing. H.R. Conceptualization. writing – review and editing. A.U. Conceptualization, supervision, writing – review and editing.

Corresponding author

Correspondence to Areum Hyun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, A., Takashima, M., Hall, S. et al. Wearable biosensors for pediatric hospitals: a scoping review. Pediatr Res 98, 90–99 (2025). https://doi.org/10.1038/s41390-024-03693-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03693-4

This article is cited by

Search

Quick links