Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Impact of persistent pulmonary hypertension on cerebral oxygenation in infants with neonatal encephalopathy

Abstract

Background

Persistent pulmonary hypertension of the newborn (PPHN) affects systemic oxygenation and may worsen brain injury in infants with neonatal encephalopathy (NE). Evidence suggests that higher cerebral regional oxygenation (crSO2) indicates derangement in cerebral autoregulation, energy metabolism, and blood flow following NE. Our aim was to evaluate the impact of PPHN on crSO2, in infants with NE treated with therapeutic hypothermia (TH).

Methods

We retrospectively evaluated infants with NE and PPHN vs without PPHN, between 2018-2022. Linear regression analysis was performed to evaluate the impact of PPHN on crSO2 and total MRI score, adjusted for perinatal factors.

Results

164 infants were analyzed, including 19(12%) with PPHN and 145(88%) without. PPHN-infants had significantly higher crSO2 during rewarming and post-rewarming compared to non-PPHN infants (87 ± 6 vs 80 ± 6, p = 0.001; 87 ± 5 vs 80 ± 7, p = 0.008, respectively), and a significantly higher total MRI score [7(2–19) vs 1(0–3), p < 0.001]. PPHN was significantly associated with higher crSO2 during rewarming (b = 6.21, 95% CI 2.37–10.04, p = 0.002) and post-rewarming (b = 8.60, 95% CI 2.28–14.91, p = 0.009), and total MRI score (b = 7.42, 95% CI 4.88–9.95, p < 0.001).

Conclusions

PPHN was associated with higher crSO2 during and after rewarming, and worse brain MRI score, indicating a significant impact of PPHN on brain injury in infants with NE undergoing TH.

Impact

  • Cerebral oxygenation was significantly higher in infants with neonatal encephalopathy (NE) and persistent pulmonary hypertension (PPHN) compared to infants without PPHN, during the rewarming and post-rewarming periods of therapeutic hypothermia (TH).

  • PPHN is associated with brain injury in infants with NE undergoing TH.

  • In infants with NE and PPHN, monitoring of cerebral oxygenation would help detect infants at higher risk of adverse outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the study population.
Fig. 2: Cerebral oxygenation in infants with and without PPHN, during the three days of TH, the rewarming, and the post-rewarming periods.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available but are available from the corresponding author upon reasonable request.

References

  1. Azzopardi, D. et al. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr. Res. 25, 445–451 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Hassell, K. J., Ezzati, M., Alonso-Alconada, D., Hausenloy, D. J. & Robertson, N. J. New horizons for newborn brain protection: enhancing endogenous neuroprotection. Arch. Dis. Child. Fetal Neonatal Ed. 100, F541–F552 (2015).

    Article  PubMed  Google Scholar 

  3. Meek, J. H. et al. Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome. Arch. Dis. Child. Fetal Neonatal Ed. 81, F110–F115 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobs, S. E. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, CD003311 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Lakshminrusimha, S. et al. Pulmonary Hypertension Associated with Hypoxic-Ischemic Encephalopathy-Antecedent Characteristics and Comorbidities. J. Pediatr. 196, 45–51 e43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shankaran, S. et al. Outcomes of safety and effectiveness in a multicenter randomized, controlled trial of whole-body hypothermia for neonatal hypoxic-ischemic encephalopathy. Pediatrics 122, e791–e798 (2008).

    Article  PubMed  Google Scholar 

  7. Garvey, A. A. & Dempsey, E. M. Applications of near infrared spectroscopy in the neonate. Curr. Opin. Pediatr. 30, 209–215 (2018).

    Article  PubMed  Google Scholar 

  8. Sood, B. G., McLaughlin, K. & Cortez, J. Near-infrared spectroscopy: applications in neonates. Semin. Fetal Neonatal Med. 20, 164–172 (2015).

    Article  PubMed  Google Scholar 

  9. Toet, M. C., Lemmers, P. M. A., van Schelven, L. J. & van Bel, F. Cerebral Oxygenation and Electrical Activity After Birth Asphyxia: Their Relation to Outcome. Pediatrics 117, 333–339 (2006).

    Article  PubMed  Google Scholar 

  10. Arriaga-Redondo, M. et al. Lack of Variability in Cerebral Oximetry Tendency in Infants with Severe Hypoxic-Ischemic Encephalopathy Under Hypothermia. Ther. Hypothermia Temp. Manag 9, 243–250 (2019).

    Article  PubMed  Google Scholar 

  11. Ancora, G. et al. Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study. Brain Dev. 35, 26–31 (2013).

    Article  PubMed  Google Scholar 

  12. Gagnon, M.-H. & Wintermark, P. Effect of persistent pulmonary hypertension on brain oxygenation in asphyxiated term newborns treated with hypothermia. J. Matern. Fetal Neonatal Med. 29, 2049–2055 (2015).

    Article  PubMed  Google Scholar 

  13. Jain, S. V. et al. Cerebral regional oxygen saturation trends in infants with hypoxic-ischemic encephalopathy. Early Hum. Dev. 113, 55–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Lemmers, P. M. A. et al. Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr. Res. 74, 180–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura, S. et al. Simultaneous measurement of cerebral hemoglobin oxygen saturation and blood volume in asphyxiated neonates by near-infrared time-resolved spectroscopy. Brain Dev. 37, 925–932 (2015).

    Article  PubMed  Google Scholar 

  16. Meiners, L. C., Sival, D. A., Bos, A. F., Niezen, C. K. & ter Horst, H. J. Amplitude-Integrated EEG and Cerebral Near-Infrared Spectroscopy in Cooled, Asphyxiated Infants. Am. J. Perinatol. 35, 904–910 (2018).

    Article  PubMed  Google Scholar 

  17. Peng, S. et al. Does near-infrared spectroscopy identify asphyxiated newborns at risk of developing brain injury during hypothermia treatment? Am. J. Perinatol. 32, 555–564 (2015).

    Article  PubMed  Google Scholar 

  18. Toet, M. C. & Lemmers, P. M. Brain monitoring in neonates. Early Hum. Dev. 85, 77–84 (2009).

    Article  PubMed  Google Scholar 

  19. Shankaran, S. et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 353, 1574–1584 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Walsh, B. H. et al. Differences in standardized neonatal encephalopathy exam criteria may impact therapeutic hypothermia eligibility. Pediatr. Res. 92, 791–798 (2022).

    Article  PubMed  Google Scholar 

  21. More, K., Soni, R., Gupta, S. The role of bedside functional echocardiography in the assessment and management of pulmonary hypertension. Semin. Fetal Neonatal Med. 27, 101366 (2022).

  22. Szakmar, E. et al. Association between cerebral oxygen saturation and brain injury in neonates receiving therapeutic hypothermia for neonatal encephalopathy. J. Perinatol. 41, 269–277 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Weeke, L. C. et al. A Novel Magnetic Resonance Imaging Score Predicts Neurodevelopmental Outcome After Perinatal Asphyxia and Therapeutic Hypothermia. J. Pediatrics 192, 33–40.e32 (2018).

    Article  Google Scholar 

  24. Cady, E. B. et al. Early cerebral-metabolite quantification in perinatal hypoxic-ischaemic encephalopathy by proton and phosphorus magnetic resonance spectroscopy. Magn. Reson Imaging 15, 605–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Laptook, A. R., Corbett, R. J., Sterett, R., Garcia, D. & Tollefsbol, G. Quantitative relationship between brain temperature and energy utilization rate measured in vivo using 31P and 1H magnetic resonance spectroscopy. Pediatr. Res. 38, 919–925 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Tekes, A. et al. Apparent diffusion coefficient scalars correlate with near-infrared spectroscopy markers of cerebrovascular autoregulation in neonates cooled for perinatal hypoxic-ischemic injury. AJNR. Am. J. Neuroradiol. 36, 188–193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giesinger, R. E. et al. Impaired Right Ventricular Performance Is Associated with Adverse Outcome after Hypoxic Ischemic Encephalopathy. Am. J. Respirat. Crit. Care Med. 200, 1294–1305 (2019).

    Article  CAS  Google Scholar 

  28. Miller, S. et al. Cardiovascular Associations with Abnormal Brain Magnetic Resonance Imaging in Neonates with Hypoxic Ischemic Encephalopathy Undergoing Therapeutic Hypothermia and Rewarming. Am. J. Perinatol. 35, 979–989 (2018).

    Article  PubMed  Google Scholar 

  29. Al Balushi, A. et al. Hypotension and Brain Injury in Asphyxiated Newborns Treated with Hypothermia. Am. J. Perinatol. 35, 31–38 (2018).

    Article  PubMed  Google Scholar 

  30. Mohammad, K. et al. Hemodynamic instability associated with increased risk of death or brain injury in neonates with hypoxic ischemic encephalopathy. J. Neonatal Perinat. Med. 10, 363–370 (2017).

    Article  CAS  Google Scholar 

  31. Wintermark, P., Hansen, A., Warfield, S. K., Dukhovny, D. & Soul, J. S. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neuroimage 85, 287–293 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Wintermark, P. et al. Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia. AJNR Am. J. Neuroradiol. 32, 2023–2029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Variane, G. F. T., Chock, V. Y., Netto, A., Pietrobom, R. F. R. & Van Meurs, K. P. Simultaneous Near-Infrared Spectroscopy (NIRS) and Amplitude-Integrated Electroencephalography (aEEG): Dual Use of Brain Monitoring Techniques Improves Our Understanding of Physiology. Front. Pediatr. 7, 560 (2019).

    Article  PubMed  Google Scholar 

  34. Vesoulis, Z. A., Liao, S. M. & Mathur, A. M. Late failure of cerebral autoregulation in hypoxic-ischemic encephalopathy is associated with brain injury: a pilot study. Physiol. Meas. 39, 125004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu, T. W., Tamrazi, B., Soleymani, S., Seri, I. & Noori, S. Hemodynamic Changes During Rewarming Phase of Whole-Body Hypothermia Therapy in Neonates with Hypoxic-Ischemic Encephalopathy. J. Pediatr. 197, 68–74.e62 (2018).

    Article  PubMed  Google Scholar 

  36. Gebauer, C. M., Knuepfer, M., Robel-Tillig, E., Pulzer, F. & Vogtmann, C. Hemodynamics among neonates with hypoxic-ischemic encephalopathy during whole-body hypothermia and passive rewarming. Pediatrics 117, 843–850 (2006).

    Article  PubMed  Google Scholar 

  37. Bacher, A. Effects of body temperature on blood gases. Intensive Care Med. 31, 24–27 (2005).

    Article  PubMed  Google Scholar 

  38. Chalak, L. F., Tarumi, T. & Zhang, R. The “neurovascular unit approach” to evaluate mechanisms of dysfunctional autoregulation in asphyxiated newborns in the era of hypothermia therapy. Early Hum. Dev. 90, 687–694 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pryds, O., Greisen, G., Lou, H. & Friis-Hansen, B. Vasoparalysis associated with brain damage in asphyxiated term infants. J. Pediatr. 117, 119–125 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Wayock, C. P. et al. Perinatal risk factors for severe injury in neonates treated with whole-body hypothermia for encephalopathy. Am. J. Obstet. Gynecol. 211, 41.e41–e48 (2014).

    Article  Google Scholar 

  41. Mercuri, E. et al. Neonatal Neurological Examination in Infants with Hypoxic Ischaemic Encephalopathy: Correlation with MRI Findings. Neuropediatrics 30, 83–89 (2007).

    Article  Google Scholar 

  42. Laptook, A. R. et al. Outcome of Term Infants Using Apgar Scores at 10 min Following Hypoxic-Ischemic Encephalopathy. Pediatrics 124, 1619–1626 (2009).

    Article  PubMed  Google Scholar 

  43. Sarkar, S., Bhagat, I., Dechert, R. E. & Barks, J. D. Predicting death despite therapeutic hypothermia in infants with hypoxic-ischaemic encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 95, F423–F428 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DR, HC, ME: Substantial contributions to conception and design; HE, AG: Acquisition of data; DR, Analysis and interpretation of data and drafting the article or revising it critically for important intellectual content; DR, HE, ES, AG, HC, ME: Final approval of the version to be published.

Corresponding author

Correspondence to Dimitrios Rallis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rallis, D., El-Shibiny, H., Szakmar, E. et al. Impact of persistent pulmonary hypertension on cerebral oxygenation in infants with neonatal encephalopathy. Pediatr Res 98, 203–209 (2025). https://doi.org/10.1038/s41390-024-03718-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03718-y

Search

Quick links