Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroinflammatory pathways and potential therapeutic targets in neonatal post-hemorrhagic hydrocephalus

Abstract

Background

Post-hemorrhagic hydrocephalus (PHH) is a severe complication in premature infants following intraventricular hemorrhage (IVH). It is characterized by abnormal cerebrospinal fluid (CSF) accumulation, disrupted CSF dynamics, and elevated intracranial pressure (ICP), leading to significant neurological impairments.

Objective

This review provides an overview of recent molecular insights into the pathophysiology of PHH and evaluates emerging therapeutic approaches aimed at addressing its underlying mechanisms.

Methods

Recent studies were reviewed, focusing on molecular and cellular mechanisms implicated in PHH, including neuroinflammatory pathways, immune mediators, and regulatory genes. The potential of advanced technologies such as whole genome/exome sequencing, proteomics, epigenetics, and single-cell transcriptomics to identify key molecular targets was also analyzed.

Results

PHH has been strongly linked to neuroinflammatory processes triggered by the degradation of blood byproducts. These processes involve cytokines, chemokines, the complement system, and other immune mediators, as well as regulatory genes and epigenetic mechanisms. Current treatments, primarily surgical CSF diversion, do not address the underlying molecular pathology. Emerging therapies, such as mesenchymal stem cell-based interventions, show promise in modulating immune responses and mitigating neurological damage. However, concerns about the safety of these novel approaches in neonatal populations and their potential effects on brain development remain unresolved.

Conclusions

Advanced molecular tools and emerging therapies have the potential to transform the treatment of PHH by targeting its underlying pathophysiology. Further research is needed to validate these approaches, enhance their safety profiles, and improve outcomes for infants with PHH.

Impact statement

  1. 1.

    This review elucidates the molecular complexities of post-hemorrhagic hydrocephalus (PHH) by examining specific immune pathways and their impact on disease pathogenesis and progression.

  2. 2.

    It outlines the application of genomic, epigenomic, and proteomic technologies to identify critical molecular targets in PHH, setting the stage for innovative, targeted therapeutic approaches that could improve the outcomes of neonates affected by PHH.

  3. 3.

    It discusses the potential of gene and stem cell therapies in treating PHH, offering non-surgical alternatives and focusing on the underlying neuroinflammatory mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: This figure illustrates the key molecular and cellular components involved in the neuro-inflammatory response in post-hemorrhagic hydrocephalus (PHH) and provides an overview of their physiological impacts.
Fig. 2: This figure proposes the activation mechanisms of NKCC1 in the ChP’s luminal membrane.
Fig. 3: This figure shows the role of the choroid plexus (ChP) in the pathogenesis of acquired hydrocephalus after brain infection or hemorrhage.
Fig. 4: This figure illustrates the role of Aquaporin-4 (AQP4) in brain fluid dynamics.
Fig. 5: Depicted here is the role of the Na-K-Cl cotransporter (NKCC1) in managing PHH via targeted gene therapy in the ChP.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Rekate, H. L. A contemporary definition and classification of hydrocephalus. Semin Pediatr. Neurol. 16, 9–15 (2009).

    Article  PubMed  Google Scholar 

  2. Kahle, K. T., Kulkarni, A. V., Limbrick, D. D. Jr. & Warf, B. C. Hydrocephalus in children. Lancet 387, 788–799 (2016).

    Article  PubMed  Google Scholar 

  3. Isaacs, A. M. et al. Age-specific global epidemiology of hydrocephalus: systematic review, metanalysis and global birth surveillance. PLoS One 13, e0204926 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dewan, M. C. et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J. Neurosurg. 1–15 https://doi.org/10.3171/2017.10.JNS17439 (2018).

  5. O’Hayon, B. B., Drake, J. M., Ossip, M. G., Tuli, S. & Clarke, M. Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr. Neurosurg. 29, 245–249 (1998).

    Article  PubMed  Google Scholar 

  6. Dandy, W. E. & Blackfan, K. D. An experimental and clinical study of internal hydrocephalus. J. Am. Med. Assoc. 61, 2216–2217 (1913).

    Article  Google Scholar 

  7. Aronyk, K. E. The history and classification of hydrocephalus. Neurosurg. Clin. N. Am. 4, 599–609 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Mori, K. in Hydrocephalus: pathogenesis and treatment (eds S. Matsumoto & N. Tamaki) 362–368 (Springer Verlag, 1991).

  9. Raimondi, A. J. A unifying theory for the definition and classification of hydrocephalus. Childs Nerv. Syst. 10, 2–12 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Rekate, H. L. A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv. Syst. 27, 1535–1541 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tully, H. M. & Dobyns, W. B. Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur. J. Med. Genet. 57, 359–368 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chu, S. M. et al. Neurological complications after neonatal bacteremia: the clinical characteristics, risk factors, and outcomes. PLoS One 9, e105294 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, L. et al. Association of bacteria with hydrocephalus in Ugandan infants. J. Neurosurg. Pediatr. 7, 73–87 (2011).

    Article  PubMed  Google Scholar 

  14. Volpe, J. J. Intraventricular hemorrhage and brain injury in the premature infant. Diagnosis, prognosis, and prevention. Clin. Perinatol. 16, 387–411 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Lai, G. Y. et al. Global incidence proportion of intraventricular haemorrhage of prematurity: a meta-analysis of studies published 2010-2020. Arch. Dis. Child Fetal Neonatal Ed. 107, 513–519 (2022).

    Article  PubMed  Google Scholar 

  16. Ballabh, P. & de Vries, L. S. White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat. Rev. Neurol. 17, 199–214 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Adams-Chapman, I., Hansen, N. I., Stoll, B. J., Higgins, R. & Network, N. R. Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics 121, e1167–1177 (2008).

    Article  PubMed  Google Scholar 

  18. Stoll, B. J. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA 314, 1039–1051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Limbrick, D. D. Jr. et al. Neurosurgical treatment of progressive posthemorrhagic ventricular dilation in preterm infants: a 10-year single-institution study. J. Neurosurg. Pediatr. 6, 224–230 (2010).

    Article  PubMed  Google Scholar 

  20. Murphy, B. P. et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch. Dis. Child Fetal Neonatal Ed. 87, F37–F41 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vassilyadi, M., Tataryn, Z., Shamji, M. F. & Ventureyra, E. C. Functional outcomes among premature infants with intraventricular hemorrhage. Pediatr. Neurosurg. 45, 247–255 (2009).

    Article  PubMed  Google Scholar 

  22. Radic, J. A., Vincer, M. & McNeely, P. D. Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J. Neurosurg. Pediatr. 15, 580–588 (2015).

    Article  PubMed  Google Scholar 

  23. Hollebrandse, N. L. et al. School-age outcomes following intraventricular haemorrhage in infants born extremely preterm. Arch. Dis. Child Fetal Neonatal Ed. 106, 4–8 (2021).

    Article  PubMed  Google Scholar 

  24. Riva-Cambrin, J. et al. Center effect and other factors influencing temporization and shunting of cerebrospinal fluid in preterm infants with intraventricular hemorrhage. J. Neurosurg. Pediatr. 9, 473–481 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wellons, J. C. et al. A multicenter retrospective comparison of conversion from temporary to permanent cerebrospinal fluid diversion in very low birth weight infants with posthemorrhagic hydrocephalus. J. Neurosurg. Pediatr. 4, 50–55 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wellons, J. C. et al. Shunting outcomes in posthemorrhagic hydrocephalus: results of a Hydrocephalus Clinical Research Network prospective cohort study. J. Neurosurg. Pediatr. 20, 19–29 (2017).

    Article  PubMed  Google Scholar 

  27. Drake, J. M., Kulkarni, A. V. & Kestle, J. Endoscopic third ventriculostomy versus ventriculoperitoneal shunt in pediatric patients: a decision analysis. Childs Nerv. Syst. 25, 467–472 (2009).

    Article  PubMed  Google Scholar 

  28. Kulkarni, A. V. et al. Endoscopic third ventriculostomy vs cerebrospinal fluid shunt in the treatment of hydrocephalus in children: a propensity score-adjusted analysis. Neurosurgery 67, 588–593 (2010).

    Article  PubMed  Google Scholar 

  29. Kulkarni, A. V. et al. Endoscopic third ventriculostomy in children: prospective, multicenter results from the Hydrocephalus Clinical Research Network. J. Neurosurg. Pediatr. 18, 423–429 (2016).

    Article  PubMed  Google Scholar 

  30. Kulkarni, A. V. et al. Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls. Clin. Artic. J. Neurosurg. Pediatr. 12, 334–338 (2013).

    Article  Google Scholar 

  31. Wellons, J. C. et al. Shunting outcomes in posthemorrhagic hydrocephalus: results of a Hydrocephalus Clinical Research Network prospective cohort study. J. Neurosurg. Pediatr. 20, 19 (2017).

    Article  PubMed  Google Scholar 

  32. Cizmeci, M. N. et al. Randomized controlled early versus late ventricular intervention study in posthemorrhagic ventricular dilatation: outcome at 2 years. J. Pediatr. 226, 28–35 e23 (2020).

    Article  PubMed  Google Scholar 

  33. Luyt, K. et al. Drainage, irrigation and fibrinolytic therapy (DRIFT) for posthaemorrhagic ventricular dilatation: 10-year follow-up of a randomised controlled trial. Arch. Dis. Child Fetal Neonatal Ed. 105, 466–473 (2020).

    Article  PubMed  Google Scholar 

  34. Paturu, M. et al. Does ventricle size contribute to cognitive outcomes in posthemorrhagic hydrocephalus? Role of early definitive intervention. J. Neurosurg. Pediatr. 29, 10–20 (2022).

    Article  PubMed  Google Scholar 

  35. Strahle, J. M. et al. Longitudinal CSF iron pathway proteins in posthemorrhagic hydrocephalus: associations with ventricle size and neurodevelopmental outcomes. Ann. Neurol. 90, 217–226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whitelaw, A. et al. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125, e852–858 (2010).

    Article  PubMed  Google Scholar 

  37. Garton, T., Hua, Y., Xiang, J., Xi, G. & Keep, R. F. Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin. Ther. Targets 21, 1111–1122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kandula, V. et al. The role of blood product removal in intraventricular hemorrhage of prematurity: a meta-analysis of the clinical evidence. Childs Nerv. Syst. 38, 239–252 (2022).

    Article  PubMed  Google Scholar 

  39. Garton, T. et al. Intraventricular hemorrhage: the role of blood components in secondary injury and hydrocephalus. Transl. Stroke Res. 7, 447–451 (2016).

    Article  PubMed  Google Scholar 

  40. Strahle, J. et al. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl. Stroke Res. 3, 25–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koschnitzky, J. E. et al. Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids Barriers CNS 15, 11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. McAllister, J. P. et al. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium “Opportunities for Hydrocephalus Research: Pathways to Better Outcomes. J. Neurosurg. 123, 1427–1438 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Del Bigio, M. R. & Di Curzio, D. L. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13, 3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lolansen, S. D. et al. Posthemorrhagic hydrocephalus associates with elevated inflammation and CSF hypersecretion via activation of choroidal transporters. Fluids Barriers CNS 19, 62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Otun, A. et al. Biochemical profile of human infant cerebrospinal fluid in intraventricular hemorrhage and post-hemorrhagic hydrocephalus of prematurity. Fluids Barriers CNS 18, 62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia-Bonilla, M. et al. Pro-inflammatory cerebrospinal fluid profile of neonates with intraventricular hemorrhage: clinical relevance and contrast with CNS infection. Fluids Barriers CNS 21, 17 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lolansen, S. D. et al. Inflammatory markers in cerebrospinal fluid from patients with hydrocephalus: a systematic literature review. Dis. Markers 2021, 8834822 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Isaacs, A. M. & Limbrick, D. D. in Cerebrospinal Fluid Disorders 47–70 (Springer, Cham, 2019).

  49. Habiyaremye, G. et al. Chemokine and cytokine levels in the lumbar cerebrospinal fluid of preterm infants with post-hemorrhagic hydrocephalus. Fluids Barriers CNS 14, 35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Harris, C. A., Morales, D. M., Arshad, R., McAllister, J. P. 2nd & Limbrick, D. D. Jr. Cerebrospinal fluid biomarkers of neuroinflammation in children with hydrocephalus and shunt malfunction. Fluids Barriers CNS 18, 4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sival, D. A. et al. Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNgamma in cerebrospinal fluid. Cerebrospinal Fluid Res. 5, 21 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schmitz, T. et al. Interleukin-1beta, interleukin-18, and interferon-gamma expression in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus-markers of white matter damage? Pediatr. Res. 61, 722–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Isaacs, A. M. et al. Microstructural periventricular white matter injury in post-hemorrhagic ventricular dilatation. Neurology 98, e364–e375 (2021).

    Google Scholar 

  54. Isaacs, A. M. et al. MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity. Neuroimage Clin. 24, 102031 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mayer, M. G. & Fischer, T. Microglia at the blood brain barrier in health and disease. Front. Cell Neurosci. 18, 1360195 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yao, L. et al. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J. Neuroinflammation 10, 23 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Karimy, J. K., Reeves, B. C. & Kahle, K. T. Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury. Expert Opin. Ther. Targets 24, 525–533 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shao, F., Wang, X., Wu, H., Wu, Q. & Zhang, J. Microglia and neuroinflammation: crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front. Aging Neurosci. 14, 825086 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, Y. et al. Bliverdin reductase-A improves neurological function in a germinal matrix hemorrhage rat model. Neurobiol. Dis. 110, 122–132 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Cao, D. et al. CD36 regulates lipopolysaccharide-induced signaling pathways and mediates the internalization of Escherichia coli in cooperation with TLR4 in goat mammary gland epithelial cells. Sci. Rep. 6, 23132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao, X., Grotta, J., Gonzales, N. & Aronowski, J. Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke 40, S92–S94 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, Q. et al. Simvastatin promotes hematoma absorption and reduces hydrocephalus following intraventricular hemorrhage in part by upregulating CD36. Transl. Stroke Res. 8, 362–373 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Yano, M. et al. Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circ. Res. 100, 1442–1451 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Ibrahim Fouad, G. Sulforaphane, an Nrf-2 agonist, modulates oxidative stress and inflammation in a rat model of cuprizone-induced cardiotoxicity and hepatotoxicity. Cardiovasc. Toxicol. 23, 46–60 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhao, X. et al. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J. Neurochem 133, 144–152 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Olsson, M., Nilsson, A. & Oldenborg, P. A. Dose-dependent inhibitory effect of CD47 in macrophage uptake of IgG-opsonized murine erythrocytes. Biochem. Biophys. Res. Commun. 352, 193–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Ye, F., Hua, Y., Keep, R. F., Xi, G. & Garton, H. J. L. CD47 blocking antibody accelerates hematoma clearance and alleviates hydrocephalus after experimental intraventricular hemorrhage. Neurobiol. Dis. 155, 105384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tao, C., Keep, R. F., Xi, G. & Hua, Y. CD47 blocking antibody accelerates hematoma clearance after intracerebral hemorrhage in aged rats. Transl. Stroke Res. 11, 541–551 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Robert, S. M. et al. The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus. Cell 186, 764–785.e721 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peng, J. et al. Toll-like receptor 4-mediated microglial inflammation exacerbates early white matter injury following experimental subarachnoid hemorrhage. J. Neurochem. 166, 280–293 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Karimy, J. K. et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat. Med. 23, 997–1003 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, T. et al. Pharmacological inhibition of TLR4-NF-kappaB signaling by TAK-242 attenuates hydrocephalus after intraventricular hemorrhage. Int. Immunopharmacol. 103, 108486 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Gurung, P. et al. Chronic TLR stimulation controls NLRP3 inflammasome activation through IL-10 mediated regulation of NLRP3 expression and caspase-8 activation. Sci. Rep. 5, 14488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qi, H. M., Cao, Q. & Liu, Q. TLR4 regulates vascular smooth muscle cell proliferation in hypertension via modulation of the NLRP3 inflammasome. Am. J. Transl. Res. 13, 314–325 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Janeway C. A., et al. in Immunobiology: The Immune System in Health and Disease (New York: Garland Science, 2021).

  76. Alawieh, A., Langley, E. F., Weber, S., Adkins, D. & Tomlinson, S. Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J. Neurosci. 38, 2519–2532 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alshareef, M. et al. A role of complement in the pathogenic sequelae of mouse neonatal germinal matrix hemorrhage. Int. J. Mol. Sci. 23 https://doi.org/10.3390/ijms23062943 (2022).

  78. Foreman, K. E. et al. C5a-induced expression of P-selectin in endothelial cells. J. Clin. Investig. 94, 1147–1155 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hatchell, D. et al. A role for P-selectin and complement in the pathological sequelae of germinal matrix hemorrhage. J. Neuroinflammation 20, 143 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kuo, L. T. & Huang, A. P. The pathogenesis of hydrocephalus following aneurysmal subarachnoid hemorrhage. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms22095050 (2021).

  81. Luo, J. TGF-beta as a key modulator of astrocyte reactivity: disease relevance and therapeutic implications. Biomedicines 10 https://doi.org/10.3390/biomedicines10051206 (2022).

  82. Cherian, S., Whitelaw, A., Thoresen, M. & Love, S. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol. 14, 305–311 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Cao, Y. et al. Metformin alleviates delayed hydrocephalus after intraventricular hemorrhage by inhibiting inflammation and fibrosis. Transl. Stroke Res. 14, 364–382 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Douglas-Escobar, M. & Weiss, M. D. Biomarkers of brain injury in the premature infant. Front. Neurol. 3, 185 (2012).

    PubMed  Google Scholar 

  85. Douglas, M. R. et al. High CSF transforming growth factor beta levels after subarachnoid haemorrhage: association with chronic communicating hydrocephalus. J. Neurol. Neurosurg. Psychiatry 80, 545–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Botfield, H. et al. Decorin prevents the development of juvenile communicating hydrocephalus. Brain 136, 2842–2858 (2013).

    Article  PubMed  Google Scholar 

  87. Zhan, C. et al. Decreased MiR-30a promotes TGF-beta1-mediated arachnoid fibrosis in post-hemorrhagic hydrocephalus. Transl. Neurosci. 11, 60–74 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, H., Chen, L., Xie, D. & Niu, J. Protective effects of transforming growth factor-beta1 knockdown in human umbilical cord mesenchymal stem cells against subarachnoid hemorrhage in a rat model. Cerebrovasc. Dis. 49, 79–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Isaacs, A. M. et al. Immune activation during Paenibacillus brain infection in African infants with frequent cytomegalovirus co-infection. iScience 24, 102351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, L. et al. Progress in research on TLR4-mediated inflammatory response mechanisms in brain injury after subarachnoid hemorrhage. Cells 11 https://doi.org/10.3390/cells11233781 (2022).

  91. Johnsen, L. O., Friis, K. A. & Damkier, H. H. In vitro investigation of the effect of proinflammatory cytokines on mouse choroid plexus membrane transporters Ncbe and NKCC1. Fluids Barriers CNS 20, 71 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Banerjee, S., Biehl, A., Gadina, M., Hasni, S. & Schwartz, D. M. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77, 521–546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Solimani, F., Meier, K. & Ghoreschi, K. Emerging topical and systemic JAK inhibitors in dermatology. Front. Immunol. 10, 2847 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tanaka, Y., Luo, Y., O’Shea, J. J. & Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol. 18, 133–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, Y. et al. SOCS1/JAK2/STAT3 axis regulates early brain injury induced by subarachnoid hemorrhage via inflammatory responses. Neural Regen. Res. 16, 2453–2464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ben Haim, L. et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J. Neurosci. 35, 2817–2829 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ceyzeriat, K., Abjean, L., Carrillo-de Sauvage, M. A., Ben Haim, L. & Escartin, C. The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway? Neuroscience 330, 205–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Gialeli, A. et al. The miRNA transcriptome of cerebrospinal fluid in preterm infants reveals the signaling pathways that promote reactive gliosis following cerebral hemorrhage. Front. Mol. Neurosci. 16, 1211373 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nobuta, H. et al. STAT3-mediated astrogliosis protects myelin development in neonatal brain injury. Ann. Neurol. 72, 750–765 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dunn, J. F. & Isaacs, A. M. The impact of hypoxia on blood-brain, blood-CSF and CSF-brain barriers. J. Appl. Physiol. https://doi.org/10.1152/japplphysiol.00108.2020 (2021).

  101. Karimy, J. K. et al. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nat. Rev. Neurol. 16, 285–296 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Robert, S. M. et al. Inflammatory hydrocephalus. Childs Nerv. Syst. 37, 3341–3353 (2021).

    Article  PubMed  Google Scholar 

  103. Crack, P. J. et al. Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes. J. Neuroinflammation 11, 37 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lummis, N. C. et al. LPA(1/3) overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction. Sci. Adv. 5, eaax2011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yung, Y. C. et al. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci. Transl. Med. 3, 99ra87 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kelley, N., Jeltema, D., Duan, Y. & He, Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 20 https://doi.org/10.3390/ijms20133328 (2019).

  107. Cheng, S. et al. Methylprednisolone sodium succinate reduces BBB disruption and inflammation in a model mouse of intracranial haemorrhage. Brain Res. Bull. 127, 226–233 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Groslambert, M. & Py, B. F. Spotlight on the NLRP3 inflammasome pathway. J. Inflamm. Res. 11, 359–374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, Z. et al. NLRP3 inflammasome-mediated choroid plexus hypersecretion contributes to hydrocephalus after intraventricular hemorrhage via phosphorylated NKCC1 channels. J. Neuroinflammation 19, 163 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nagra, G. et al. Elevated CSF outflow resistance associated with impaired lymphatic CSF absorption in a rat model of kaolin-induced communicating hydrocephalus. Cerebrospinal Fluid Res. 7, 4 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Eide, P. K. et al. Intrathecal contrast-enhanced magnetic resonance imaging of cerebrospinal fluid dynamics and glymphatic enhancement in idiopathic normal pressure hydrocephalus. Front. Neurol. 13, 857328 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ringstad, G. et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 3 https://doi.org/10.1172/jci.insight.121537 (2018).

  114. Jacobsen, H. H. et al. In vivo evidence for impaired glymphatic function in the visual pathway of patients with normal pressure hydrocephalus. Investig. Ophthalmol. Vis. Sci. 61, 24 (2020).

    Article  Google Scholar 

  115. Sevensky, R., Newville, J. C., Tang, H. L., Robinson, S. & Jantzie, L. L. Cumulative damage: cell death in posthemorrhagic hydrocephalus of prematurity. Cells 10 https://doi.org/10.3390/cells10081911 (2021).

  116. Ding, Y. et al. Astrogliosis inhibition attenuates hydrocephalus by increasing cerebrospinal fluid reabsorption through the glymphatic system after germinal matrix hemorrhage. Exp. Neurol. 320, 113003 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Hablitz, L. M. et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 5, eaav5447 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jiang-Xie, L. F. et al. Neuronal dynamics direct cerebrospinal fluid perfusion and brain clearance. Nature 627, 157–164 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Murdock, M. H. et al. Multisensory gamma stimulation promotes glymphatic clearance of amyloid. Nature 627, 149–156 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gomolka, R. S. et al. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. Elife 12 https://doi.org/10.7554/eLife.82232 (2023).

  123. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Fang, Y. et al. Pituitary adenylate cyclase-activating polypeptide attenuates brain edema by protecting blood-brain barrier and glymphatic system after subarachnoid hemorrhage in rats. Neurotherapeutics 17, 1954–1972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Del Puerto, A. et al. Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Mol. Psychiatry 26, 6411–6426 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Botello-Smith, W. M. et al. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat. Commun. 10, 4503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Choi, D. et al. Piezo1 regulates meningeal lymphatic vessel drainage and alleviates excessive CSF accumulation. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01604-8 (2024).

  128. Choi, D. et al. ORAI1 activates proliferation of lymphatic endothelial cells in response to laminar flow through Kruppel-like factors 2 and 4. Circ. Res. 120, 1426–1439 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Choi, D. et al. Laminar flow downregulates Notch activity to promote lymphatic sprouting. J. Clin. Investig. 127, 1225–1240 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Choi, D. et al. Piezo1-regulated mechanotransduction controls flow-activated lymphatic expansion. Circ. Res. 131, e2–e21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Matrongolo, M. J. et al. Piezo1 agonist restores meningeal lymphatic vessels, drainage, and brain-CSF perfusion in craniosynostosis and aged mice. J. Clin. Investig. 134 https://doi.org/10.1172/JCI171468 (2023).

  132. Ridone, P., Vassalli, M. & Martinac, B. Piezo1 mechanosensitive channels: what are they and why are they important. Biophys. Rev. 11, 795–805 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Doring, Y., Soehnlein, O. & Weber, C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ. Res. 120, 736–743 (2017).

    Article  PubMed  Google Scholar 

  134. Fruh, A. et al. RNase A inhibits formation of neutrophil extracellular traps in subarachnoid hemorrhage. Front. Physiol. 12, 724611 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liu, J., Zhang, S., Jing, Y. & Zou, W. Neutrophil extracellular traps in intracerebral hemorrhage: implications for pathogenesis and therapeutic targets. Metab. Brain Dis. 38, 2505–2520 (2023).

    Article  PubMed  Google Scholar 

  136. Zhang, Q. et al. Neutrophil extracellular trap-mediated impairment of meningeal lymphatic drainage exacerbates secondary hydrocephalus after intraventricular hemorrhage. Theranostics 14, 1909–1938 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pavan, C. et al. DNase treatment prevents cerebrospinal fluid block in early experimental pneumococcal meningitis. Ann. Neurol. 90, 653–669 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Filipczak, N. et al. Antibody-modified DNase I micelles specifically recognize the neutrophil extracellular traps (NETs) and promote their degradation. J. Control Release 354, 109–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Gu, L. et al. Integrating network pharmacology and transcriptomic omics reveals that akebia saponin D attenuates neutrophil extracellular traps-induced neuroinflammation via NTSR1/PKAc/PAD4 pathway after intracerebral hemorrhage. FASEB J. 38, e23394 (2024).

    Article  CAS  PubMed  Google Scholar 

  140. Kang, L. et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun. 11, 2488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim, S. W., Lee, H., Lee, H. K., Kim, I. D. & Lee, J. K. Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol. Commun. 7, 94 (2019).

    Article  PubMed  Google Scholar 

  142. Sadegh, C. et al. Choroid plexus-targeted NKCC1 overexpression to treat post-hemorrhagic hydrocephalus. Neuron 111, 1591–1608.e1594 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Purohit, D. et al. Human cord blood derived unrestricted somatic stem cells restore aquaporin channel expression, reduce inflammation and inhibit the development of hydrocephalus after experimentally induced perinatal intraventricular hemorrhage. Front. Cell Neurosci. 15, 633185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Garcia-Bonilla, M. et al. Neocortical tissue recovery in severe congenital obstructive hydrocephalus after intraventricular administration of bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther. 11, 121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ahn, S. Y., Chang, Y. S., Sung, S. I. & Park, W. S. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial. Stem Cells Transl. Med. 7, 847–856 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jinnai, M. et al. A model of germinal matrix hemorrhage in preterm rat pups. Front. Cell Neurosci. 14, 535320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.N.S. conducted the primary literature review and drafted the initial manuscript. A.V. synthesized molecular insights and contributed to the discussion of neuroinflammatory pathways in post-hemorrhagic hydrocephalus. M.M. provided expertise on epigenetic mechanisms and potential therapeutic targets. M.W. assisted with the conceptual framework and contributed to revising and refining the manuscript. J.A.P. and J.R.L. reviewed the clinical implications of neuroinflammation and potential treatments, ensuring relevance to neonatal care. M.G.-B. contributed insights on immune-mediated neuroinflammation. J.P.M. provided guidance on cerebrospinal fluid dynamics in PHH. K.C. reviewed discussions on advanced molecular tools, including transcriptomics and proteomics. R.K.W. and E.R.M. contributed expertise on genomic technologies and their translational applications. D.D.L. provided critical feedback on therapeutic approaches and future directions. A.M.I. conceived the review, coordinated contributions from all authors, and finalized the manuscript for submission. All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to Albert M. Isaacs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz, L.N., Varghese, A., Michenkova, M. et al. Neuroinflammatory pathways and potential therapeutic targets in neonatal post-hemorrhagic hydrocephalus. Pediatr Res 97, 1345–1357 (2025). https://doi.org/10.1038/s41390-024-03733-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03733-z

This article is cited by

Search

Quick links