Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Neuropathiazol induces neuronal-like differentiation in neuroblastoma cells via upregulation of PEG5

Abstract

Background

Differentiation therapy is emerging as a promising strategy for treating neuroblastoma. However, the effects of neuropathiazol, a small molecule known to induce neuronal differentiation, have not been explored in neuroblastoma.

Procedure

Neuroblastoma cell lines were used to investigate the effects of neuropathiazol and retinoic acid on cell morphology, proliferation, and invasion in vitro. In vivo, neuroblastoma cells were implanted in nude mice to assess neuropathiazol’s therapeutic potential. Silver staining and markers of mature neurons were employed to evaluate neuropathiazol’s ability to promote neuronal differentiation.

Results

Neuropathiazol significantly inhibited the proliferation and invasion of neuroblastoma cells in vitro. It also enhanced synaptic growth and increased the expression of mature neuron markers more effectively than retinoic acid. Neuropathiazol treatment upregulated PEG5 expression, suggesting its role in promoting neuronal differentiation. Silencing PEG5 reversed these differentiation effects, reducing neuronal features. In vivo, neuropathiazol suppressed tumor growth and induced neuron-like differentiation in tumor tissues. However, its efficacy was diminished when PEG5 was knocked down. Additionally, neuropathiazol synergized with cyclophosphamide, enhancing its anti-neuroblastoma effects.

Conclusion

Neuropathiazol induces neuroblastoma differentiation, partly through PEG5 upregulation. As a promising differentiating agent for neuroblastoma, the combination of neuropathiazol and cyclophosphamide offers a potential treatment strategy for the disease.

Impact

  • Neuropathiazol significantly inhibits neuroblastoma cell proliferation and invasion in vitro.

  • Neuropathiazol promotes synaptic growth and upregulates mature neuronal marker expression more effectively than retinoic acid.

  • Neuropathiazol induces significant neuronal-like differentiation of neuroblastoma cells in vivo, leading to tumor growth suppression.

  • PEG5 is identified as a critical mediator of neuropathiazol’s differentiation-inducing effects. Knockdown of PEG5 reverses these effects, underscoring its pivotal role.

  • The combination of neuropathiazol with cyclophosphamide synergistically enhances anti-neuroblastoma effects, offering a compelling pharmacotherapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of RA and NPZ on inducing differentiation of neuroblastoma cells.
Fig. 2: Effects of RA and NPZ on the expression of MAP2, NEFL, and PEG5 proteins in neuroblastoma cells.
Fig. 3: Effect of PEG5 knockdown on neuroblastoma cell differentiation.
Fig. 4: Effects of NPZ and CTX treatments on SK-N-AS tumor-bearing nude mice.
Fig. 5: Effect of NPZ treatment on cellular differentiation in tumor tissues of SK-N-AS xenograft mice.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Qiu, B. & Matthay, K. K. Advancing therapy for neuroblastoma. Nat. Rev. Clin. Oncol. 19, 515–533 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Ponzoni, M. et al. Recent advances in the developmental origin of neuroblastoma: an overview. J. Exp. Clin. Cancer Res. 41, 92 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Makimoto, A. et al. Retinoid Therapy for Neuroblastoma: Historical Overview, Regulatory Challenges, and Prospects. Cancers 16, 544 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Warashina, M. et al. A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew. Chem. Int. Ed. Engl. 45, 591–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Pitale, P. M., Howse, W. & Gorbatyuk, M. Neuronatin Protein in Health and Disease. J. Cell Physiol. 232, 477–481 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Higashi, M. et al. High expressions of neuronatin isoforms in favorable neuroblastoma. J. Pediatr. Hematol. Oncol. 29, 551–556 (2007).

    Article  PubMed  Google Scholar 

  7. Singh, A. et al. Retinoic acid induces REST degradation and neuronal differentiation by modulating the expression of SCFβ-TRCP in neuroblastoma cells. Cancer 117, 5189–5202 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Illendula, A., Fultang, N. & Peethambaran, B. Retinoic acid induces differentiation in neuroblastoma via ROR1 by modulating retinoic acid response elements. Oncol. Rep. 44, 1013–1024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawaguchi, K. et al. Combination of gemcitabine and docetaxel regress both gastric leiomyosarcoma proliferation and invasion in an imageable patient-derived orthotopic xenograft (iPDOX) model. Cell Cycle 16, 1063–1069 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lundberg, K. I., Treis, D. & Johnsen, J. I. Neuroblastoma Heterogeneity, Plasticity, and Emerging Therapies. Curr. Oncol. Rep. 24, 1053–1062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yilmaz, M., Kantarjian, H. & Ravandi, F. Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 11, 123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Child. Cancer Group. N. Engl. J. Med. 341, 1165–1173 (1999).

    CAS  PubMed  Google Scholar 

  13. Peinemann, F., ECv, Dalen, Enk, H. & Berthold, F. Retinoic acid postconsolidation therapy for high-risk neuroblastoma patients treated with autologous haematopoietic stem cell transplantation. Cochrane Database Syst. Rev. 8, CD010685 (2017).

    PubMed  Google Scholar 

  14. Reynolds, C. P., Matthay, K. K., Villablanca, J. G. & Maurer, B. J. Retinoid therapy of high-risk neuroblastoma - ScienceDirect. Cancer Lett. 197, 185–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Bayeva, N., Coll, E. & Piskareva, O. Differentiating neuroblastoma: a systematic review of the retinoic acid, its derivatives, and synergistic interactions. J. Pers. Med. 11, 211 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bigby, M. & Stern, R. S. Adverse reactions to isotretinoin. A report from the Adverse Drug Reaction Reporting System. J. Am. Acad. Dermatol 18, 543–552 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Evans, H. K., Weidman, J. R., Cowley, D. O. & Jirtle, R. L. Comparative phylogenetic analysis of blcap/nnat reveals eutherian-specific imprinted gene. Mol. Biol. Evol. 22, 1740–1748 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Schulz, R. et al. Transcript- and tissue-specific imprinting of a tumour suppressor gene. Hum. Mol. Genet 18, 118–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Dugu, L. et al. Aberrant expression of tenascin-c and neuronatin in malignant peripheral nerve sheath tumors. Eur. J. Dermatol 20, 580–584 (2010).

    PubMed  Google Scholar 

  20. Cimino, I. et al. Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. Sci. Rep. 11, 17571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Braun, J. L. et al. Neuronatin promotes SERCA uncoupling and its expression is altered in skeletal muscles of high-fat diet-fed mice. FEBS Lett. 595, 2756–2767 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Siu, I. M. et al. Coexpression of neuronatin splice forms promotes medulloblastoma growth. Neuro Oncol. 10, 716–724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, F., Xu, W., Tang, X., Li, Q. & Hou, X. Hui X Claudin 4 enhances the malignancy of glioma cells via NNAT/Wnt signaling. Am. J. Cancer Res. 13, 2530–2539 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, J. et al. Metformin induces ER stress-dependent apoptosis through miR-708-5p/NNAT pathway in prostate cancer. Oncogenesis 4, e158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pieper, W. et al. The predictive potential of Neuronatin for neoadjuvant chemotherapy of breast cancer. Cancer Biomark. 32, 161–173 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Xiong, H., Chen, G., Fang, K., Gu, W. & Qiu, F. Neuronatin Promotes the Progression of Non-Small Cell Lung Cancer by Activating the NF-κB Signaling. Curr. Cancer Drug Targets 24, 1128–1143 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Saeed, H. et al. Aberrant epigenetic silencing of neuronatin is a frequent event in human osteosarcoma. Oncotarget 11, 1876–1893 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li, B., Xu, H., He, C., Zou, W. & Tu, Y. Lidocaine prevents breast cancer growth by targeting neuronatin to inhibit nerve fibers formation. J. Toxicol. Sci. 46, 329–339 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Queirós, V., Azeiteiro, U. M., Soares, A. M. V. M. & Freitas, R. The antineoplastic drugs cyclophosphamide and cisplatin in the aquatic environment - Review. J. Hazard Mater. 412, 125028 (2021).

    Article  PubMed  Google Scholar 

  30. Mangó, K. et al. Association between CYP2B6 genetic variability and cyclophosphamide therapy in pediatric patients with neuroblastoma. Sci. Rep. 13, 11770 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eslin, D. et al. A phase II trial of nifurtimox combined with topotecan and cyclophosphamide for refractory or relapsed neuroblastoma and medulloblastoma. Int. J. Cancer 153, 1026–1034 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Ioris, M. A. D. et al. Venetoclax plus cyclophosphamide and topotecan in heavily pre-treated relapsed metastatic neuroblastoma: a single center case series. Sci. Rep. 13, 19295 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Jiangxi Provincial Health Commission Technology Plan Project (SKJP220219919).

Author information

Authors and Affiliations

Authors

Contributions

Hao Xu: conceptualization, investigation, methodology, project administration, visualization, writing – original draft; Fei Zhang: data curation, formal analysis, methodology, software, writing – review & editing; Yi Xu: data curation, methodology, software, validation; Tianpeng Chen: methodology, resources; Fenqian Yuan: data curation, software, validation; Qihong Nie: funding acquisition, supervision.

Corresponding author

Correspondence to Qihong Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhang, F., Xu, Y. et al. Neuropathiazol induces neuronal-like differentiation in neuroblastoma cells via upregulation of PEG5. Pediatr Res 98, 1570–1579 (2025). https://doi.org/10.1038/s41390-025-03925-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-025-03925-1

Search

Quick links