Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Bulk and single-cell RNA sequencing reveal the roles of neutrophils in pediatric Crohn’s disease

Abstract

Background

Pediatric Crohn’s disease (CD) is a chronic inflammatory bowel disorder that poses significant health risks to children. Although the precise etiology of CD remains elusive, further exploration is needed to identify diagnostic biomarkers and therapeutic targets.

Methods

This study utilized single-cell and bulk RNA sequencing data derived from ileal and colonic biopsy samples to explore the molecular mechanisms and cell types associated with CD, as well as to pinpoint potential biomarkers and therapeutic targets.

Results

The results revealed a more pronounced alteration in both the quantity and functional state of neutrophils in the CD cohort compared to those with ulcerative colitis and healthy controls. Neutrophils were present in higher proportions in the CD group, primarily in an activated state, potentially correlating with the presence of deep ulcerations and inflammatory histopathological features. Additionally, neutrophil interactions with other cell types were markedly enhanced in the CD group, making neutrophils the dominant participants in cell-to-cell communications. Further analysis indicated a shift in neutrophil phenotype from pro-inflammatory and antimicrobial to tissue-repairing, which may contribute to the progression and exacerbation of CD.

Conclusion

IL1B, ICAM1, CXCL1, and CXCL9, primarily expressed in neutrophils, were potential biomarkers for CD. Neutrophils might be considered a potential target for pediatric CD.

Impact Statement

  • This study demonstrated that patients with CD exhibited a greater proportion of activated neutrophils, with enhanced interactions between neutrophils and all other cell types, resulting in neutrophils contributing the most cell-cell interactions within the CD gut.

  • Neutrophils in the CD gut transition from a pro-inflammatory and antibacterial phenotype to one that promotes tissue healing, potentially influencing the progression and exacerbation of CD. Neutrophils represent a promising therapeutic target in pediatric CD.

  • Hub genes associated with CD, including IL1B, ICAM1, CXCL1, and CXCL9, are predominantly expressed in neutrophils, positioning them as promising diagnostic biomarkers for CD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: WGCNA identified gene coexpression modules associated with CD.
Fig. 2: Identification of independent risk/protective genes related to CD.
Fig. 3: Construction and verification of a nomogram for the diagnosis of CD.
Fig. 4: scRNA-seq data revealed neutrophil populations related to CD.
Fig. 5: Neutrophil reclustering and subcluster analysis.
Fig. 6: Immunological characteristics related to CD.

Similar content being viewed by others

Data availability

Data supporting our research can be obtained from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). The data generated during the current study are available from the corresponding author on reasonable request.

References

  1. Rosen, M. J., Dhawan, A. & Saeed, S. A. Inflammatory bowel disease in children and adolescents. JAMA Pediatr. 169, 1053–1060 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Ye, Y., Manne, S., Treem, W. R. & Bennett, D. Prevalence of inflammatory bowel disease in pediatric and adult populations: recent estimates from large national databases in the United States, 2007–2016. Inflamm. Bowel Dis. 26, 619–625 (2019).

  3. Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).

    PubMed  Google Scholar 

  4. Benchimol, E. I. et al. Trends in epidemiology of pediatric inflammatory bowel disease in Canada: distributed network analysis of multiple population-based provincial health administrative databases. Am. J. Gastroenterol. 112, 1120–1134 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Dolinger, M., Torres, J. & Vermeire, S. Crohn’s disease. Lancet 403, 1177–1191 (2024).

    PubMed  CAS  Google Scholar 

  6. Pigneur, B. et al. Natural history of Crohn’s disease: comparison between childhood- and adult-onset disease. Inflamm. Bowel Dis. 16, 953–961 (2010).

    PubMed  Google Scholar 

  7. Mitchel, E. B. & Rosh, J. R. Pediatric management of Crohn’s disease. Gastroenterol. Clin. North Am. 51, 401–424 (2022).

    PubMed  Google Scholar 

  8. Agrawal, M., Spencer, E. A., Colombel, J. F. & Ungaro, R. C. Approach to the management of recently diagnosed inflammatory bowel disease patients: a user’s guide for adult and pediatric gastroenterologists. Gastroenterology 161, 47–65 (2021).

    PubMed  Google Scholar 

  9. Yu, Y. R. & Rodriguez, J. R. Clinical presentation of Crohn’s, ulcerative colitis, and indeterminate colitis: symptoms, extraintestinal manifestations, and disease phenotypes. Semin. Pediatr. Surg. 26, 349–355 (2017).

    PubMed  Google Scholar 

  10. Laass, M. W., Roggenbuck, D. & Conrad, K. Diagnosis and classification of Crohn’s disease. Autoimmun. Rev. 13, 467–471 (2014).

    PubMed  Google Scholar 

  11. Roda, G. et al. Crohn’s disease. Nat. Rev. Dis. Prim. 6, 22 (2020).

    PubMed  Google Scholar 

  12. Xuan, J., Yu, Y., Qing, T., Guo, L. & Shi, L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 340, 284–295 (2013).

    PubMed  CAS  Google Scholar 

  13. Hong, M. et al. Rna sequencing: new technologies and applications in cancer research. J. Hematol. Oncol. 13, 166 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Stark, R., Grzelak, M. & Hadfield, J. Rna sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).

    PubMed  CAS  Google Scholar 

  15. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Langfelder, P. & Horvath, S. Wgcna: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).

    Google Scholar 

  17. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005).

    PubMed  Google Scholar 

  18. Xu, L., Xiao, T., Xu, L. & Yao, W. Identification of therapeutic targets and prognostic biomarkers in cholangiocarcinoma via Wgcna. Front. Oncol. 12, 977992 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Szklarczyk, D. et al. String V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2018).

    PubMed Central  Google Scholar 

  20. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Nick, T. G. & Hardin, J. M. Regression modeling strategies: an illustrative case study from medical rehabilitation outcomes research. Am. J. Occup. Ther. 53, 459–470 (1999).

    PubMed  CAS  Google Scholar 

  22. Vickers, A. J. & Elkin, E. B. Decision curve analysis: a novel method for evaluating prediction models. Med. Decis. Mak. 26, 565–574 (2006).

    Google Scholar 

  23. Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling tumor infiltrating immune cells with cibersort. Methods Mol. Biol. 1711, 243–259 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e1821 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Jin, S. et al. Inference and analysis of cell-cell communication using cellchat. Nat. Commun. 12, 1088 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. Clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Hanzelmann, S., Castelo, R. & Guinney, J. Gsva: gene set variation analysis for microarray and Rna-Seq data. BMC Bioinforma. 14, 7 (2013).

    Google Scholar 

  30. Hackert, N. S. et al. Human and mouse neutrophils share core transcriptional programs in both homeostatic and inflamed contexts. Nat. Commun. 14, 8133 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Danne, C., Skerniskyte, J., Marteyn, B. & Sokol, H. Neutrophils: from ibd to the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 21, 184–197 (2024).

    PubMed  CAS  Google Scholar 

  32. Garrido-Trigo, A. et al. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. Nat. Commun. 14, 4506 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Torres, J., Mehandru, S., Colombel, J. F. & Peyrin-Biroulet, L. Crohn’s disease. Lancet 389, 1741–1755 (2017).

    PubMed  Google Scholar 

  34. Feuerstein, J. D. & Cheifetz, A. S. Crohn’s disease: epidemiology, diagnosis, and management. Mayo Clin. Proc. 92, 1088–1103 (2017).

    PubMed  CAS  Google Scholar 

  35. Gomollon, F. et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J. Crohns Colitis 11, 3–25 (2017).

    PubMed  Google Scholar 

  36. Nahon, S. et al. Diagnostic delay in a French cohort of Crohn’s disease patients. J. Crohns Colitis 8, 964–969 (2014).

    PubMed  Google Scholar 

  37. Maconi, G. et al. The impact of symptoms, irritable bowel syndrome pattern and diagnostic investigations on the diagnostic delay of Crohn’s disease: a prospective study. Dig. Liver Dis. 47, 646–651 (2015).

    PubMed  Google Scholar 

  38. Vavricka, S. R. et al. Systematic evaluation of risk factors for diagnostic delay in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 496–505 (2012).

    PubMed  Google Scholar 

  39. Schoepfer, A. M. et al. Diagnostic delay in Crohn’s disease is associated with a complicated disease course and increased operation rate. Am. J. Gastroenterol. 108, 1744–1753 (2013).

    PubMed  Google Scholar 

  40. Nahon, S. et al. Diagnostic delay is associated with a greater risk of early surgery in a French cohort of Crohn’s disease patients. Dig. Dis. Sci. 61, 3278–3284 (2016).

    PubMed  Google Scholar 

  41. Magro, F. et al. European consensus on the histopathology of inflammatory bowel disease. J. Crohns Colitis 7, 827–851 (2013).

    PubMed  CAS  Google Scholar 

  42. Lopez, R. N. et al. Fecal biomarkers in inflammatory bowel disease. J. Gastroenterol. Hepatol. 32, 577–582 (2017).

    PubMed  Google Scholar 

  43. Zollner, A. et al. Faecal biomarkers in inflammatory bowel diseases: calprotectin versus lipocalin-2-a comparative study. J. Crohns Colitis 15, 43–54 (2021).

    PubMed  Google Scholar 

  44. Mortha, A. et al. Neutralizing anti-granulocyte macrophage-colony stimulating factor autoantibodies recognize post-translational glycosylations on granulocyte macrophage-colony stimulating factor years before diagnosis and predict complicated Crohn’s disease. Gastroenterology 163, 659–670 (2022).

    PubMed  CAS  Google Scholar 

  45. Fernandes, F. P., Leal, V. N. C., Souza de Lima, D., Reis, E. C. & Pontillo, A. Inflammasome genetics and complex diseases: a comprehensive review. Eur. J. Hum. Genet. 28, 1307–1321 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Filik, L. The neutrophil respiratory burst and bacterial digestion in Crohn’s disease. Dig. Dis. Sci. 56, 1921 (2011).

    PubMed  Google Scholar 

  47. Yu, H. H., Yang, Y. H. & Chiang, B. L. Chronic granulomatous disease: a comprehensive review. Clin. Rev. Allergy Immunol. 61, 101–113 (2021).

    PubMed  CAS  Google Scholar 

  48. Visser, G. et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European study on glycogen storage disease type I. J. Pediatr. 137, 187–191 (2000).

    PubMed  CAS  Google Scholar 

  49. Marks, D. J., Rahman, F. Z., Sewell, G. W. & Segal, A. W. Crohn’s disease: an immune deficiency state. Clin. Rev. Allergy Immunol. 38, 20–31 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the study participants who donated the samples. The study was supported by the Youth Program of the National Natural Science Foundation of China (No. 81902439).

Author information

Authors and Affiliations

Contributions

L.X. and T.X. conceived the idea, designed the study, analyzed data, performed most of the experiments, and drafted the manuscript. L.X. and B.Z. assisted in designing the study, data analysis, drafting the manuscript, and sample collection. Y.W. supervised the entire project.

Corresponding authors

Correspondence to Biao Zou or Wei Yao.

Ethics declarations

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Xiao, T., Xu, L. et al. Bulk and single-cell RNA sequencing reveal the roles of neutrophils in pediatric Crohn’s disease. Pediatr Res 98, 1950–1959 (2025). https://doi.org/10.1038/s41390-025-03961-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-025-03961-x

Search

Quick links