Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Postnatally induced TBX4 insufficiency confers pulmonary hypertension and impairs lung development in infant mice

Abstract

Background

Genetic variants in T-box transcription factor 4 (TBX4) cause pulmonary hypertension (PH); however, there are diverse phenotypes with respect to the timing and severity of disease. Previous mouse studies demonstrated that germline TBX4 knockout is embryonic lethal, but knowledge gaps exist in how postnatal disruption of TBX4 signaling affects lung structure and PH.

Methods

A mouse model was used in which TBX4 was inactivated on day of life (DOL) 1. On DOL21, lung function was evaluated, and tissue was collected. Radial alveolar counts (RAC), vessel density, and right ventricular hypertrophy (RVH) were assessed. Downstream lung angiogenic (VEGF, KDR, and eNOS) and inflammatory mediators (TNF-a and IL-1) were measured.

Results

TBX4-deficient mice exhibited decreased RAC compared to controls (p < 0.05). Total lung resistance was increased, and total lung compliance was reduced in the TBX4-deficient group (p < 0.05, p < 0.01). Postnatal TBX4 deletion reduced lung vessel density (p < 0.001) and caused RVH (p < 0.01). Lung pro-angiogenic and inflammatory cytokine expression was reduced in TBX4-deficient mice.

Conclusion

Postnatal disruption of TBX4 signaling is sufficient to impair lung function, reduce alveolar and vascular growth, and cause RVH, which are associated with decreased lung expression of pro-angiogenic mediators but not enhanced inflammation.

Impact

  • TBX4 insufficiency is a rare genetic cause of pulmonary hypertension (PH) with poorly understood, variable phenotypes.

  • Postnatal disruption of TBX4 is sufficient to cause pulmonary vascular disease and impair lung development in infant mice. Although narrower in scope, we hypothesize that the late timing of TBX4 disruption plays a role in the severity of the lung phenotype.

  • Pro-angiogenic mediators (VEGF, KDR, and eNOS) and inflammatory cytokines (TNF-a and IL-1) are downregulated in the lungs of TBX4-deficient mice.

  • We speculate that greater insight into the mechanisms underlying TBX4-related PH may provide novel therapeutic targets for the management of TBX4 disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mating schematic for Cre-loxP model of TBX4 deficiency and experimental methodology.
Fig. 2: RAC data and histology.
Fig. 3: Resistance and compliance data.
Fig. 4: Vessel Density data with vWF-stained histology.
Fig. 5: Right ventricular hypertrophy data.
Fig. 6: Angiogenic mediators.
Fig. 7: Inflammatory cytokines.

Similar content being viewed by others

Data availability

Data supporting the findings of this study can be requested from the corresponding author by request.

References

  1. Naeije, R., Richter, M. J. & Rubin, L. J. The physiological basis of pulmonary arterial hypertension. Eur. Respir. J. 59, 2102334 (2022).

  2. Mocumbi, A. et al. Pulmonary hypertension. Nat. Rev. Dis. Prim. 10, 1 (2024).

    Article  PubMed  Google Scholar 

  3. Danhaive, O., Galambos, C., Lakshminrusimha, S. & Abman, S. H. Pulmonary hypertension in developmental lung diseases. Clin. Perinatol. 51, 217–235 (2024).

    Article  PubMed  Google Scholar 

  4. Welch, C. L. & Chung, W. K. Genetics and other omics in pediatric pulmonary arterial hypertension. Chest 157, 1287–1295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Welch, C. L. et al. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet. Med. 25, 100925 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kerstjens-Frederikse, W. S. et al. TBX4 mutations (Small Patella Syndrome) are associated with childhood-onset pulmonary arterial hypertension. J. Med. Genet. 50, 500–506 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Haarman, M. G., Kerstjens-Frederikse, W. S. & Berger, R. M. F. TBX4 variants and pulmonary diseases: getting out of the ‘Box’. Curr. Opin. Pulm. Med. 26, 277–284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cebra-Thomas, J. A. et al. T-box gene products are required for mesenchymal induction of epithelial branching in the embryonic mouse lung. Dev. Dyn. 226, 82–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Papaioannou, V. E. & Silver, L. M. The T-box gene family. Bioessays 20, 9–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Chapman, D. L. et al. Expression of the t-box family genes, TBX1-TBX5, during early mouse development. Dev. Dyn. 206, 379–390 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Duboc, V. et al. TBX4 function during hindlimb development reveals a mechanism that explains the origins of proximal limb defects. Development 148, dev199580 (2021).

  12. Bongers, E. M. et al. Mutations in the human TBX4 gene cause Small Patella Syndrome. Am. J. Hum. Genet. 74, 1239–1248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krause, A. et al. TBX5 AND TBX4 transcription factors interact with a new chicken PDZ-LIM protein in limb and heart development. Dev. Biol. 273, 106–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Thoré, P. et al. Phenotype and outcome of pulmonary arterial hypertension patients carrying a TBX4 mutation. Eur. Respir. J. 55, 1902340 (2020).

  15. Galambos, C. et al. Phenotype characterisation of TBX4 mutation and deletion carriers with neonatal and paediatric pulmonary hypertension. Eur. Respir. J. 54, 1801965 (2019).

  16. Zhu, N. et al. Exome sequencing in children with pulmonary arterial hypertension demonstrates differences compared with adults. Circ. Genom. Precis. Med. 11, e001887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mullen, M. P. Understanding genotype-phenotype correlations in patients with TBX4 mutations: new views inside and outside the box. Am. J. Respir. Crit. Care Med. 206, 1448–1449 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Prapa, M. et al. First genotype-phenotype study in TBX4 syndrome: gain-of-function mutations causative for lung disease. Am. J. Respir. Crit. Care Med. 206, 1522–1533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karolak, J. A. et al. Molecular function and contribution of TBX4 in development and disease. Am. J. Respir. Crit. Care Med. 207, 855–864 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Arora, R., Metzger, R. J. & Papaioannou, V. E. Multiple roles and interactions of TBX4 AND TBX5 in development of the respiratory system. PLoS Genet. 8, e1002866 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naiche, L. A. & Papaioannou, V. E. Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130, 2681–2693 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Maddaloni, C. et al. Neonatal persistent pulmonary hypertension related to a novel TBX4 mutation: case report and review of the literature. Ital. J. Pediatr. 50, 41 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flanagan, F. O. et al. An intronic variant in TBX4 in a single family with variable and severe pulmonary manifestations. NPJ Genom. Med. 8, 7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Naiche, L. A. & Papaioannou, V. E. TBX4 is not required for hindlimb identity or post-bud hindlimb outgrowth. Development 134, 93–103 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Barst, R. J. et al. STARTS-2: long-term survival with oral sildenafil monotherapy in treatment-naive pediatric pulmonary arterial hypertension. Circulation 129, 1914–1923 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Emery, J. L. & Mithal, A. The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch. Dis. Child. 35, 544–547 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bose, C. et al. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics 124, e450–e458 (2009).

    Article  PubMed  Google Scholar 

  28. Thurlbeck, W. M. Internal surface area and other measurements in emphysema. Thorax 22, 483–496 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cooney, T. P. & Thurlbeck, W. M. The radial alveolar count method of Emery and Mithal: a reappraisal 1-postnatal lung growth. Thorax 37, 572–579 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cooney, T. P. & Thurlbeck, W. M. The radial alveolar count method of Emery and Mithal: a reappraisal 2-intrauterine and early postnatal lung growth. Thorax 37, 580–583 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de La Roque, E. D. et al. Effect of chronic hypoxia on pulmonary artery blood velocity in rats as assessed by electrocardiography-triggered three-dimensional time-resolved MR angiography. NMR Biomed. 24, 225–230 (2011).

    Article  PubMed  Google Scholar 

  32. Papaioannou, V. E. The T-box gene family: emerging roles in development, stem cells and cancer. Development 141, 3819–3833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karolak, J. A. et al. Complex compound inheritance of lethal lung developmental disorders due to disruption of the TBX-FGF pathway. Am. J. Hum. Genet. 104, 213–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suhrie, K. et al. Neonatal lung disease associated with TBX4 mutations. J. Pediatr. 206, 286–292.e281 (2019).

    Article  PubMed  Google Scholar 

  35. German, K. et al. Identification of a deletion containing TBX4 in a neonate with acinar dysplasia by rapid exome sequencing. Am. J. Med. Genet. A 179, 842–845 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Szafranski, P. et al. Phenotypic expansion of TBX4 mutations to include acinar dysplasia of the lungs. Am. J. Med. Genet. A 170, 2440–2444 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Chelladurai, P. et al. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br. J. Pharmacol. 178, 54–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Chelladurai, P. et al. Epigenetic reactivation of transcriptional programs orchestrating fetal lung development in human pulmonary hypertension. Sci. Transl. Med. 14, eabe5407 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Sakiyama, J., Yamagishi, A. & Kuroiwa, A. TBX4-FGF10 system controls lung bud formation during chicken embryonic development. Development 130, 1225–1234 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Karolak, J. A., Gambin, T., Szafranski, P. & Stankiewicz, P. Potential interactions between the TBX4-FGF10 and Shh-Foxf1 signaling during human lung development revealed using ChIP-seq. Respir. Res. 22, 26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoshida, Y. et al. Genetic and functional analyses of TBX4 reveal novel mechanisms underlying pulmonary arterial hypertension. J. Mol. Cell. Cardiol. 171, 105–116 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Compernolle, V. et al. Loss of HIF-2alpha and Inhibition of VEGF Impair fetal lung maturation, whereas treatment with VEGF Prevents fatal respiratory distress in premature mice. Nat. Med. 8, 702–710 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Grover, T. R. et al. Intrauterine hypertension decreases lung VEGF expression and VEGF INhibition causes pulmonary hypertension in the ovine fetus. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L508–L517 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Jakkula, M. et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L600–L607 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Le Cras, T. D., Markham, N. E., Tuder, R. M., Voelkel, N. F. & Abman, S. H. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L555–L562 (2002).

    Article  PubMed  Google Scholar 

  46. Domingo, L. T. et al. Novel use of riociguat in infants with severe pulmonary arterial hypertension unable to wean from inhaled nitric oxide. Front. Pediatr. 10, 1014922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giesinger, R. E., Stanford, A. H., Thomas, B., Abman, S. H. & McNamara, P. J. Safety and feasibility of riociguat therapy for the treatment of chronic pulmonary arterial hypertension in infancy. J. Pediatr. 255, 224–229.e221 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Katsura, H., Kobayashi, Y., Tata, P. R. & Hogan, B. L. M. IL-1 and TNFα contribute to the inflammatory niche to enhance alveolar regeneration. Stem Cell Rep. 12, 657–666 (2019).

    Article  CAS  Google Scholar 

  49. Predescu, D. N., Mokhlesi, B. & Predescu, S. A. The impact of sex chromosomes in the sexual dimorphism of pulmonary arterial hypertension. Am. J. Pathol. 192, 582–594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grant funding from the NIH (HL68702; SHA).

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data: Caroline F. Smith, Kathy L. Ding, Gregory J. Seedorf, Csaba Galambos, Steven H. Abman. Drafting the article or revising it critically for important intellectual content: Caroline F. Smith, Gregory J. Seedorf, Csaba Galambos, Steven H. Abman. Final approval of the version to be published: Caroline F. Smith, Kathy L. Ding, Gregory J. Seedorf, Csaba Galambos, Steven H. Abman.

Corresponding author

Correspondence to Caroline F. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, C.F., Ding, K.L., Seedorf, G.J. et al. Postnatally induced TBX4 insufficiency confers pulmonary hypertension and impairs lung development in infant mice. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04127-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-025-04127-5

Search

Quick links