Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neutrophil heterogeneity in Kawasaki disease and multisystem inflammatory syndrome in children

Abstract

Neutrophils, specialized cells of the early innate immune response, are important for maintaining the body’s internal homeostasis. Upon invasion by foreign microbes, neutrophils are swiftly activated and recruited to the infection site, where they perform bactericidal functions through phagocytic clearance, degranulation-mediated toxin release, and NADPH oxidase-dependent killing. While their presence is crucial in the early stages of inflammation to combat infection, the prolonged engagement of neutrophils at the infection site can cause tissue damage due to apoptosis and the release of cytotoxic mediators. Neutrophils exhibit significant heterogeneity in response to allostatic conditions, with their phenotypic and functional properties undergoing distinct changes. Therefore, understanding the heterogeneity and diversity of neutrophils under physiological and pathological conditions is important. Multisystem inflammatory syndrome in children (MIS-C) is a pediatric inflammatory syndrome that emerges following exposure to SARS-CoV-2, while Kawasaki disease (KD) is a childhood systemic vasculitis with unknown etiology. Both conditions share clinical features, including neutrophilia and cardiovascular complications. This suggests the likelihood of overlapping underlying immunopathogenic mechanisms, and neutrophils may play a crucial role in these processes. This review focuses on the heterogeneity and function of neutrophils in KD and MIS-C, providing a comprehensive overview of the current research in this field.

Impact

  • Neutrophils exhibit significant heterogeneity under physiological and pathological states. Different neutrophil subsets perform diverse functional characteristics.

  • KD and MIS-C have apparent phenotypic similarities of systemic inflammation and cardiovascular complications. Neutrophil heterogeneity correlates with disease severity, and studies of neutrophil subsets reveal potential shared immunological drivers.

  • Multi-omics analysis of neutrophil heterogeneity helps to better understand neutrophil subsets and discover new functions. Research into MIS-C and KD enhances our understanding of pediatric inflammatory diseases with cardiovascular involvement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The development and migration trajectory of neutrophils.

Similar content being viewed by others

References

  1. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Lahoz-Beneytez, J. et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood 127, 3431–3438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burn, G. L., Foti, A., Marsman, G., Patel, D. F. & Zychlinsky, A. The Neutrophil. Immunity 54, 1377–1391 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Tak, T., Tesselaar, K., Pillay, J., Borghans, J. A. & Koenderman, L. What’s your age again? Determination of human neutrophil half-lives revisited. J. Leukoc. Biol. 94, 595–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Nourshargh, S., Renshaw, S. A. & Imhof, B. A. Reverse migration of neutrophils: Where, when, how, and why?. Trends Immunol. 37, 273–286 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, L., Luqmani, R. & Udalova, I. A. The role of neutrophils in rheumatic disease-associated vascular inflammation. Nat. Rev. Rheumatol. 18, 158–170 (2022).

    Article  PubMed  Google Scholar 

  7. Feldstein, L. R. et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N. Engl. J. Med. 383, 334–346 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Feldstein, L. R. et al. Characteristics and outcomes of US children and adolescents with multisystem inflammatory syndrome in children (MIS-C) compared with severe acute COVID-19. JAMA 325, 1074–1087 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Yilmaz, D. et al. Evaluation of 601 children with multisystem inflammatory syndrome (Turk MISC study). Eur. J. Pediatr. 182, 5531–5542 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Henderson, L. A. et al. American College of Rheumatology Clinical Guidance for multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19: version 2. Arthritis Rheumatol.73, e13–e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Isaza-Correa, J. et al. Innate immune dysregulation in multisystem inflammatory syndrome in children (MIS-C). Sci. Rep. 13, 16463 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farias, J. S. et al. The use of neutrophil-lymphocyte ratio for the prediction of refractory disease and coronary artery lesions in patients with Kawasaki disease. Cardiol. Young 33, 1409–1417 (2023).

    Article  PubMed  Google Scholar 

  13. Takahashi, K., Oharaseki, T. & Yokouchi, Y. Histopathological aspects of cardiovascular lesions in Kawasaki disease. Int. J. Rheum. Dis. 21, 31–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8(+) T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruterbusch, M., Pruner, K. B., Shehata, L. & Pepper, M. In vivo CD4(+) T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu. Rev. Immunol. 38, 705–725 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Yvan-Charvet, L. & Ng, L. G. Granulopoiesis and neutrophil homeostasis: a metabolic, daily balancing act. Trends Immunol. 40, 598–612 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Paudel, S., Ghimire, L., Jin, L., Jeansonne, D. & Jeyaseelan, S. Regulation of emergency granulopoiesis during infection. Front. Immunol. 13, 961601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muench, D. E. et al. Mouse models of neutropenia reveal progenitor-stage-specific defects. Nature 582, 109–114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kwok, I. et al. Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 53, 303–318.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Dinh, H. Q. et al. Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow. Immunity 53, 319–334.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, Y. P. et al. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 24, 2329–2341.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, M. H. et al. A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis. Sci. Rep. 7, 39804 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosales, C. Neutrophil: a cell with many roles in inflammation or several cell types?. Front. Physiol. 9, 113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Adrover, J. M., Nicolás-Ávila, J. A. & Hidalgo, A. Aging: a temporal dimension for neutrophils. Trends Immunol. 37, 334–345 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Lawrence, S. M., Corriden, R. & Nizet, V. How neutrophils meet their end. Trends Immunol. 41, 531–544 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Uhl, B. et al. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood 128, 2327–2337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adrover, J. M. et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity 50, 390–402.e310 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 5, 3–8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schrijver, I. T., Théroude, C. & Roger, T. Myeloid-derived suppressor cells in sepsis. Front. Immunol. 10, 327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hassani, M. et al. On the origin of low-density neutrophils. J. Leukoc. Biol. 107, 809–818 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Bowers, N. L. et al. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog. 10, e1003993 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Silvestre-Roig, C., Fridlender, Z. G., Glogauer, M. & Scapini, P. Neutrophil diversity in health and disease. Trends Immunol. 40, 565–583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramirez-Velazquez, C., Castillo, E. C., Guido-Bayardo, L. & Ortiz-Navarrete, V. IL-17-producing peripheral blood CD177+ neutrophils increase in allergic asthmatic subjects. Allergy Asthma Clin. Immunol. 9, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clemmensen, S. N. et al. Olfactomedin 4 defines a subset of human neutrophils. J. Leukoc. Biol. 91, 495–500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alder, M. N., Opoka, A. M., Lahni, P., Hildeman, D. A. & Wong, H. R. Olfactomedin-4 is a candidate marker for a pathogenic neutrophil subset in septic shock. Crit. Care Med 45, e426–e432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, G. et al. CD177(+) neutrophils as functionally activated neutrophils negatively regulate IBD. Gut 67, 1052–1063 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, R. et al. CD177(+) cells produce neutrophil extracellular traps that promote biliary atresia. J. Hepatol. 77, 1299–1310 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, R., Huang, J., Shan, J., Chen, Y. & Xia, H. Peripheral blood CD177(+) cells as an early diagnostic marker for biliary atresia: a prospective multicentre study in pediatric patients with cholestasis. J. Hepatol. 77, 1714–1716 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Massena, S. et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 126, 2016–2026 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wigerblad, G. et al. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J. Immunol. 209, 772–782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Becher, B. et al. High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 15, 1181–1189 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Deniset, J. F., Surewaard, B. G., Lee, W. Y. & Kubes, P. Splenic Ly6G(high) mature and Ly6G(int) immature neutrophils contribute to eradication of S. pneumoniae. J. Exp. Med. 214, 1333–1350 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, K. et al. Locally organised and activated Fth1(hi) neutrophils aggravate inflammation of acute lung injury in an IL-10-dependent manner. Nat. Commun. 13, 7703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cui, A. et al. Single-cell atlas of the liver myeloid compartment before and after cure of chronic viral hepatitis. J. Hepatol. 80, 251–267 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Calcagno, D. M. et al. SiglecF(HI) marks late-stage neutrophils of the infarcted heart: a single-cell transcriptomic analysis of neutrophil diversification. J. Am. Heart Assoc. 10, e019019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vafadarnejad, E. et al. Dynamics of cardiac neutrophil diversity in murine myocardial infarction. Circ. Res. 127, e232–e249 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Sreejit, G. et al. Retention of the NLRP3 inflammasome-primed neutrophils in the bone marrow is essential for myocardial infarction-induced granulopoiesis. Circulation 145, 31–44 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Sreejit, G. et al. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 141, 1080–1094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. Science 383, eadf6493 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liew, P. X. & Kubes, P. The neutrophil’s role during health and disease. Physiol. Rev. 99, 1223–1248 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Dale, D. C., Boxer, L. & Liles, W. C. The phagocytes: neutrophils and monocytes. Blood 112, 935–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Segal, A. W. How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197–223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kruger, P. et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 11, e1004651 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Leppkes, M. et al. Neutrophils prevent rectal bleeding in ulcerative colitis by peptidyl-arginine deiminase-4-dependent immunothrombosis. Gut 71, 2414–2429 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Leppkes, M. et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 58, 102925 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu, J. et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J. Transl. Med. 18, 206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guan, J. et al. Continuous tracking of COVID-19 patients’ immune status. Int. Immunopharmacol. 89, 107034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pouletty, M. et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann. Rheum. Dis. 79, 999–1006 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Porritt, R. A. et al. The autoimmune signature of hyperinflammatory multisystem inflammatory syndrome in children. J. Clin. Investig. 131, https://doi.org/10.1172/jci151520 (2021).

  66. Meizlish, M. L. et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 5, 1164–1177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gruber, C. N. et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell 186, 3325 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aschenbrenner, A. C. et al. Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med. 13, 7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hemmat, N. et al. Neutrophils, crucial, or harmful immune cells involved in coronavirus infection: a bioinformatics study. Front. Genet. 11, 641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McElvaney, O. J. et al. Characterization of the inflammatory response to severe COVID-19 illness. Am. J. Respir. Crit. Care Med. 202, 812–821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sengupta, S., Caldwell, C. C. & Nomellini, V. Distinct neutrophil populations in the spleen during PICS. Front. Immunol. 11, 804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Belchamber, K. B. R. et al. Dysregulated neutrophil phenotype and function in hospitalised non-ICU COVID-19 pneumonia. Cells 11, https://doi.org/10.3390/cells11182901 (2022).

  73. Karawajczyk, M. et al. High expression of neutrophil and monocyte CD64 with simultaneous lack of upregulation of adhesion receptors CD11b, CD162, CD15, CD65 on neutrophils in severe COVID-19. Ther. Adv. Infect. Dis. 8, 20499361211034065 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Carter, M. J. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med. 26, 1701–1707 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. van der Poel, C. E., Spaapen, R. M., van de Winkel, J. G. & Leusen, J. H. Functional characteristics of the high affinity IgG receptor, FcγRI. J. Immunol. 186, 2699–2704 (2011).

    Article  PubMed  Google Scholar 

  76. Boribong, B. P. et al. Neutrophil profiles of pediatric COVID-19 and multisystem inflammatory syndrome in children. Cell Rep. Med. 3, 100848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramaswamy, A. et al. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity 54, 1083–1095.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, W. T. et al. Inflammasome activation in children with Kawasaki disease and multisystem inflammatory syndrome. Arterioscler Thromb. Vasc. Biol. 41, 2509–2511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Silva, C. M. S. et al. Gasdermin-D activation by SARS-CoV-2 triggers NET and mediate COVID-19 immunopathology. Crit. Care 26, 206 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Al-Kuraishy, H. M. et al. Neutrophil Extracellular Traps (NETs) and Covid-19: a new frontiers for therapeutic modality. Int. Immunopharmacol. 104, 108516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sinha, S. et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat. Med. 28, 201–211 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Combes, A. J. et al. Global absence and targeting of protective immune states in severe COVID-19. Nature 591, 124–130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Park, A. & Iwasaki, A. Type I and type III interferons—induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27, 870–878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. LaSalle, T. J. et al. Longitudinal characterization of circulating neutrophils uncovers phenotypes associated with severity in hospitalized COVID-19 patients. Cell Rep. Med. 3, 100779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Carissimo, G. et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat. Commun. 11, 5243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Silvin, A. et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 182, 1401–1418.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Karagol, C. et al. Delta neutrophil index and C-reactive protein: a potential diagnostic marker of multisystem inflammatory syndrome in children (MIS-C) with COVID-19. Eur. J. Pediatr. 181, 775–781 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Kawasaki, T., Kosaki, F., Okawa, S., Shigematsu, I. & Yanagawa, H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 54, 271–276 (1974).

    Article  CAS  PubMed  Google Scholar 

  90. McCrindle, B. W. et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 135, e927–e999 (2017).

    Article  PubMed  Google Scholar 

  91. Watts, R. A., Hatemi, G., Burns, J. C. & Mohammad, A. J. Global epidemiology of vasculitis. Nat. Rev. Rheumatol. 18, 22–34 (2022).

    Article  PubMed  Google Scholar 

  92. Ae, R. et al. Epidemiology, treatments, and cardiac complications in patients with kawasaki disease: the nationwide survey in Japan, 2017-2018. J. Pediatr. 225, 23–29.e2 (2020).

    Article  PubMed  Google Scholar 

  93. Burns, J. C., Capparelli, E. V., Brown, J. A., Newburger, J. W. & Glode, M. P. Intravenous gamma-globulin treatment and retreatment in Kawasaki disease. US/Canadian Kawasaki Syndrome Study Group. Pediatr. Infect. Dis. J. 17, 1144–1148 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Daniels, L. B. et al. Prevalence of Kawasaki disease in young adults with suspected myocardial ischemia. Circulation 125, 2447–2453 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kato, H. et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 94, 1379–1385 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Friedman, K. G. et al. Coronary artery aneurysms in Kawasaki disease: risk factors for progressive disease and adverse cardiac events in the US population. J. Am. Heart Assoc. 5, https://doi.org/10.1161/jaha.116.003289 (2016).

  97. Moffett, B. S., Syblik, D., Denfield, S., Altman, C. & Tejtel-Sexson, K. Epidemiology of immunoglobulin resistant Kawasaki disease: results from a large, national database. Pediatr. Cardiol. 36, 374–378 (2015).

    Article  PubMed  Google Scholar 

  98. Skochko, S. M. et al. Kawasaki disease outcomes and response to therapy in a multiethnic community: a 10-year experience. J. Pediatr. 203, 408–415.e3 (2018).

    Article  PubMed  Google Scholar 

  99. Andreozzi, L., Bracci, B., D’Errico, F. & Rigante, D. A master role for neutrophils in Kawasaki syndrome. Immunol. Lett. 184, 112–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Orenstein, J. M. et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS ONE 7, e38998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu, S. et al. Prediction of intravenous immunoglobulin resistance in Kawasaki disease in children. World J. Pediatr. 16, 607–613 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Tang, Y. et al. Prediction of intravenous immunoglobulin resistance in Kawasaki disease in an East China population. Clin. Rheumatol. 35, 2771–2776 (2016).

    Article  PubMed  Google Scholar 

  103. Lao, S., Zhou, T., Kuo, H. C., Zhong, G. & Zeng, W. Risk factors for coronary artery lesions in Kawasaki disease independent of antibiotic use in Chinese children. Front. Public Health 10, 817613 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lee, H. Y. & Song, M. S. Predictive factors of resistance to intravenous immunoglobulin and coronary artery lesions in Kawasaki disease. Korean J. Pediatr. 59, 477–482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ha, K. S. et al. Value of neutrophil-lymphocyte ratio in predicting outcomes in Kawasaki disease. Am. J. Cardiol. 116, 301–306 (2015).

    Article  PubMed  Google Scholar 

  106. Chang, L. S. et al. Neutrophil-to-lymphocyte ratio and scoring system for predicting coronary artery lesions of Kawasaki disease. BMC Pediatr. 20, 398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cho, H. J. et al. High neutrophil : lymphocyte ratio is associated with refractory Kawasaki disease. Pediatr. Int. 59, 669–674 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Brodeur, K. E. et al. Elevation of IL-17 cytokines distinguishes Kawasaki disease from other pediatric inflammatory disorders. Arthritis Rheumatol. https://doi.org/10.1002/art.42680 (2023).

  109. Hui-Yuen, J. S., Duong, T. T. & Yeung, R. S. TNF-alpha is necessary for induction of coronary artery inflammation and aneurysm formation in an animal model of Kawasaki disease. J. Immunol. 176, 6294–6301 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Netea, S. A. et al. Transient anti-cytokine autoantibodies superimpose the hyperinflammatory response in Kawasaki disease and multisystem inflammatory syndrome in children: a comparative cohort study on correlates of disease. EBioMedicine 95, 104736 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lord, B. I. et al. Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo. Blood 77, 2154–2159 (1991).

    Article  CAS  PubMed  Google Scholar 

  112. Lieschke, G. J. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Suzuki, H. et al. Serum levels of neutrophil activation cytokines in Kawasaki disease. Pediatr. Int. 43, 115–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Tsujimoto, H. et al. Delayed apoptosis of circulating neutrophils in Kawasaki disease. Clin. Exp. Immunol. 126, 355–364 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stock, A. T., Hansen, J. A., Sleeman, M. A., McKenzie, B. S. & Wicks, I. P. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease. J. Exp. Med. 213, 1983–1998 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Harada, M. et al. Histopathological characteristics of myocarditis in acute-phase Kawasaki disease. Histopathology 61, 1156–1167 (2012).

    Article  PubMed  Google Scholar 

  117. Takahashi, K., Oharaseki, T., Naoe, S., Wakayama, M. & Yokouchi, Y. Neutrophilic involvement in the damage to coronary arteries in acute stage of Kawasaki disease. Pediatr. Int. 47, 305–310 (2005).

    Article  PubMed  Google Scholar 

  118. Zhu, Y. P. et al. Immune response to intravenous immunoglobulin in patients with Kawasaki disease and MIS-C. J. Clin. Investig. 131, https://doi.org/10.1172/jci147076 (2021).

  119. Hu, J., Qian, W., Wang, T., Ling, J. & Shi, Y. Neutrophil extracellular traps formation and citrullinated histones 3 levels in patients with Kawasaki disease. Iran. J. Immunol. 3, 327–334 (2023).

    Google Scholar 

  120. Carmona-Rivera, C. Multicenter analysis of neutrophil extracellular trap dysregulation in adult and pediatric COVID-19. JCI Insight. 7, e160332 (2022).

  121. Yamashita, K., Takaori-Kondo, A. & Mizugishi, K. Exaggerated neutrophil extracellular trap formation in Kawasaki disease: a key phenomenon behind the outbreak in western countries? Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2020-218593 (2020).

  122. Jing, Y. et al. Neutrophil extracellular trap from Kawasaki disease alter the biologic responses of PBMC. Biosci. Rep. 40, https://doi.org/10.1042/bsr20200928 (2020).

  123. Yoshida, Y. et al. Enhanced formation of neutrophil extracellular traps in Kawasaki disease. Pediatr. Res. 87, 998–1004 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, H. et al. Subgroups of children with Kawasaki disease: a data-driven cluster analysis. Lancet Child Adolesc. Health 7, 697–707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee, S. H. et al. Delta-neutrophil index: a potential predictor of coronary artery involvement in Kawasaki disease by retrospective analysis. Rheumatol. Int. 39, 1955–1960 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Abe, J. et al. Elevated granulocyte colony-stimulating factor levels predict treatment failure in patients with Kawasaki disease. J. Allergy Clin. Immunol. 122, 1008–1013.e8 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Ogata, S. et al. Clinical score and transcript abundance patterns identify Kawasaki disease patients who may benefit from addition of methylprednisolone. Pediatr. Res. 66, 577–584 (2009).

    Article  PubMed  Google Scholar 

  128. Ko, T. M. et al. Genome-wide transcriptome analysis to further understand neutrophil activation and lncRNA transcript profiles in Kawasaki disease. Sci. Rep. 9, 328 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Beltran, J. V. B., Lin, F. P., Chang, C. L. & Ko, T. M. Single-cell meta-analysis of neutrophil activation in Kawasaki disease and multisystem inflammatory syndrome in children reveals potential shared immunological drivers. Circulation 148, 1778–1796 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Bai, M. et al. CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation. Blood 130, 2092–2100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, K. D. et al. Comparable bidirectional neutrophil immune dysregulation between Kawasaki disease and severe COVID-19. Front. Immunol. 13, 995886 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wakita, D. et al. Role of interleukin-1 signaling in a mouse model of Kawasaki disease-associated abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 36, 886–897 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Meher, A. K. et al. Novel role of IL (Interleukin)-1β in neutrophil extracellular trap formation and abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 38, 843–853 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gruber, C. N. et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell 183, 982–995.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hoang, L. T. et al. Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Med. 6 541 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Huet, T. et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2, e393–e400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tremoulet, A. H. et al. Rationale and study design for a phase I/IIa trial of anakinra in children with Kawasaki disease and early coronary artery abnormalities (the ANAKID trial). Contemp. Clin. Trials 48, 70–75 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Veras, F. P. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 217, https://doi.org/10.1084/jem.20201129 (2020).

  139. Radermecker, C. et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med. 217, https://doi.org/10.1084/jem.20201012 (2020).

  140. Martinod, K. et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc. Natl. Acad. Sci. USA 110, 8674–8679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fuchs, T. A. et al. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 107, 15880–15885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Burmeister, A. et al. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation. Front. Immunol. 13, 1078891 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zuo, Y. et al. Neutrophil extracellular traps in COVID-19. JCI Insight 5, https://doi.org/10.1172/jci.insight.138999 (2020).

  144. Noval Rivas, M. et al. Intestinal permeability and IgA provoke immune vasculitis linked to cardiovascular inflammation. Immunity 51, 508–521.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Yonker, L. M. et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J. Clin. Investig. 131, https://doi.org/10.1172/jci149633 (2021).

  146. Menikou, S., Langford, P. R. & Levin, M. Kawasaki disease: the role of immune complexes revisited. Front. Immunol. 10, 1156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Philip, S., Jindal, A. & Krishna Kumar, R. An update on understanding the pathophysiology in Kawasaki disease: possible role of immune complexes in coronary artery lesion revisited. Int. J. Rheum. Dis. 26, 1453–1463 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Ricke, D. O. & Smith, N. VAERS vasculitis adverse events retrospective study: etiology model of immune complexes activating Fc receptors in kawasaki disease and multisystem inflammatory syndromes. Life 14, https://doi.org/10.3390/life14030353 (2024).

  149. Sun, S. et al. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway. Cell Death Dis. 12, 606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, S. et al. Neutrophil-derived PAD4 induces citrullination of CKMT1 exacerbates mucosal inflammation in inflammatory bowel disease. Cell. Mol. Immunol. 21, 620–633 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Grieshaber-Bouyer, R. & Nigrovic, P. A. Neutrophil heterogeneity as therapeutic opportunity in immune-mediated disease. Front. Immunol. 10, 346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Deniset, J. F. & Kubes, P. Neutrophil heterogeneity: Bona fide subsets or polarization states?. J. Leukoc. Biol. 103, 829–838 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. van Grinsven, E. et al. Immature neutrophils released in acute inflammation exhibit efficient migration despite incomplete segmentation of the nucleus. J. Immunol.202, 207–217 (2019).

    Article  PubMed  Google Scholar 

  154. Drifte, G., Dunn-Siegrist, I., Tissières, P. & Pugin, J. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit. Care Med. 41, 820–832 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Wang, L. et al. ROS-producing immature neutrophils in giant cell arteritis are linked to vascular pathologies. JCI Insight 5, https://doi.org/10.1172/jci.insight.139163 (2020).

  156. Yao, X. et al. Neutrophil heterogeneity is modified during acute lung inflammation in Apoa1-/- mice. J. Immunol. 213, 456–468 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Bae, G. H. et al. Unique characteristics of lung-resident neutrophils are maintained by PGE2/PKA/Tgm2-mediated signaling. Blood 140, 889–899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Devi, S. et al. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J. Exp. Med. 210, 2321–2336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Song, Z. et al. NADPH oxidase 2 limits amplification of IL-1β-G-CSF axis and an immature neutrophil subset in murine lung inflammation. Blood Adv. 7, 1225–1240 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Becker, N. et al. Club cell protein 16 attenuates CD16(bright)CD62(dim) immunosuppressive neutrophils in damaged tissue upon posttraumatic sepsis-induced lung injury. J. Immunol. Res. 2021, 6647753 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Leliefeld, P. H. C. et al. Differential antibacterial control by neutrophil subsets. Blood Adv. 2, 1344–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Maali, Y. et al. Two transcriptionally and functionally distinct waves of neutrophils during mouse acute liver injury. Hepatol. Commun. 8, https://doi.org/10.1097/hc9.0000000000000459 (2024).

  163. Umeshappa, C. S. et al. Liver-specific T regulatory type-1 cells program local neutrophils to suppress hepatic autoimmunity via CRAMP. Cell Rep. 34, 108919 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Cho, Y. et al. Neutrophil extracellular traps contribute to liver damage and increase defective low-density neutrophils in alcohol-associated hepatitis. J. Hepatol. 78, 28–44 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Mi, X. et al. Stimulation of liver fibrosis by N2 neutrophils in Wilson’s disease. Cell. Mol. Gastroenterol. Hepatol. 16, 657–684 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Li, J. et al. TGFβ1(+)CCR5(+) neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice. Nat. Commun. 14, 159 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Rambault, M. et al. Neutrophils encompass a regulatory subset suppressing T cells in apparently healthy cattle and mice. Front. Immunol. 12, 625244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Creusat, F. et al. IFN-γ primes bone marrow neutrophils to acquire regulatory functions in severe viral respiratory infections. Sci. Adv. 10, eadn3257 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Deng, Y. et al. Expression characteristics of interferon-stimulated genes and possible regulatory mechanisms in lupus patients using transcriptomics analyses. EBioMedicine 70, 103477 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Skopelja-Gardner, S. et al. Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc. Natl. Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2019097118 (2021).

  172. Rudolph, V. et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat. Med. 16, 470–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ma, Y. et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res. 110, 51–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li, Y. et al. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation 140, 751–764 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Lawrence, D. A. et al. Inflammatory and autoimmune aspects of multisystem inflammatory syndrome in children (MIS-C): a prospective cohort study. Viruses 16, https://doi.org/10.3390/v16060950 (2024).

  176. Muto, T. et al. White blood cell and neutrophil counts and response to intravenous immunoglobulin in Kawasaki disease. Glob. Pediatr. Health 6, 2333794×19884826 (2019).

  177. Gruber, C. N. et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C. Cell 183, 982–995.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sacco, K. et al. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat. Med. 28, 1050–1062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, J. et al. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front. Immunol. 11, 2063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yamashita, K., Takaori-Kondo, A. & Mizugishi, K. Exaggerated neutrophil extracellular trap formation in Kawasaki disease: a key phenomenon behind the outbreak in western countries. Ann. Rheum. Dis. 81, e177 (2022).

    Article  PubMed  Google Scholar 

  181. Aymonnier, K. et al. Inflammasome activation in neutrophils of patients with severe COVID-19. Blood Adv. 6, 2001–2013 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shahi, A. et al. Potential roles of NLRP3 inflammasome in the pathogenesis of Kawasaki disease. J. Cell. Physiol. 238, 513–532 (2023).

    Article  CAS  PubMed  Google Scholar 

  183. Jin, J. et al. Neutrophil extracellular traps promote the activation of the NLRP3 inflammasome and PBMCs pyroptosis via the ROS-dependent signaling pathway in Kawasaki disease. Int. Immunopharmacol. 145, 113783 (2024).

  184. Çaǧlayan, Ş et al. Anakinra treatment in multisystemic inflammatory syndrome in children (MIS-C) associated with COVID-19. Front. Pediatr. 10, 942455 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Dusser, P. et al. Subcutaneous anakinra in the management of refractory MIS-C in France. Front. Pediatr. 12, 1270878 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Taddio, A. et al. Early anakinra treatment improves cardiac outcome of multisystem inflammatory syndrome in children, regardless of disease severity. Rheumatology 63, 366–375 (2024).

    Article  PubMed  Google Scholar 

  187. Kessel, C. et al. An immunological axis involving interleukin 1β and leucine-rich-α2-glycoprotein reflects therapeutic response of children with Kawasaki disease: implications from the KAWAKINRA Trial. J. Clin. Immunol. 42, 1330–1341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ferrara, G. et al. Anakinra for treatment-resistant Kawasaki disease: evidence from a literature review. Paediatr. Drugs 22, 645–652 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Masso-Silva, J. A. et al. Abrogation of neutrophil inflammatory pathways and potential reduction of neutrophil-related factors in COVID-19 by intravenous immunoglobulin. Front. Immunol. 13, 993720 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ganigara, M., Sharma, C. & Bayry, J. Unraveling the mechanisms of IVIG immunotherapy in MIS-C. Cell Rep. Med. 2, 100431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Syrimi, E. et al. The immune landscape of SARS-CoV-2-associated Multisystem Inflammatory Syndrome in Children (MIS-C) from acute disease to recovery. iScience 24, 103215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zheng, Y. et al. Single-cell mapping of peripheral blood mononuclear cells reveals key transcriptomic changes favoring coronary artery lesion in IVIG-resistant Kawasaki disease. Heliyon 10, e37857 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Son, M. B. F. et al. Multisystem inflammatory syndrome in children—initial therapy and outcomes. N. Engl. J. Med. 385, 23–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Kobayashi, T. et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet 379, 1613–1620 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Patel, H. et al. Shared neutrophil and T cell dysfunction is accompanied by a distinct interferon signature during severe febrile illnesses in children. Nat. Commun. 15, 8224 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82400581, 82070512, and 82270529), Jiangsu Provincial Social Development Project (BE2021655), and Suzhou “Kejiaoxingwei” Youth Science Project (KJXW2023024). The funders had no role in data collection, preparation of the manuscript, and decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

Nana Wang contributed to the relevant literature review and wrote the first draft of the manuscript. Ling Sun and Guanghui Qian helped with literature collection. Zhiheng Liu had primary responsibility for reviewing the design and writing the manuscript. Haitao Lv corrected the final draft of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Haitao Lv or Zhiheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Sun, L., Qian, G. et al. Neutrophil heterogeneity in Kawasaki disease and multisystem inflammatory syndrome in children. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-025-04200-z

Search

Quick links