Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Investigating mitophagy mechanisms in bronchopulmonary dysplasia through bioinformatics

Abstract

Background

Bronchopulmonary dysplasia (BPD) is a prevalent respiratory disease in premature infants and is accompanied by impaired lung function, increased infection risk, and other long-term complications. This study aimed to elucidate the molecular mechanisms of BPD, especially mitophagy.

Methods

Bioinformatics analyses were performed to identify differentially expressed genes (DEGs) in BPD. Weighted gene co-expression network analysis (WGCNA) was used to explore gene modules associated with mitophagy, functional enrichment analyses to identify key biological processes, and immune infiltration to assess immune cell differences.

Results

Among the 720 DEGs identified, 419 were upregulated and 301 were downregulated: these may serve as potential BPD biomarkers. WGCNA revealed that the turquoise module was strongly related to mitophagy (r = −0.6061, p < 0.05), indicating its significance in BPD pathogenesis. Enrichment analyses highlighted leukocyte migration and neutrophil extracellular trap formation, suggesting immune-mediated inflammatory response. Eight hub genes (S100P, CDC42EP3, CEACAM3, CKLF, RGL4, DOK3, B4GALT5, and MCEMP1) were identified as potential therapeutic targets. Immune infiltration analysis revealed significant differences in neutrophils and activated CD8+T cells, underscoring the immune system’s role in BPD.

Conclusion

Key molecular players and pathways involved in BPD were elucidated, providing insights for future targeted therapies addressing immunity and mitophagy in BPD.

Impact

  • This study identifies CEACAM3 and CDC42EP3 as key genes involved in mitophagy and immune dysregulation in bronchopulmonary dysplasia (BPD).

  • It provides novel insights into the TNF-α/NF-κB signaling pathway and its role in the pathogenesis of BPD.

  • This study advances biomarker discovery by associating CEACAM3 with neutrophil infiltration and CDC42EP3 with CD8+ T cell activity.

  • The selected machine learning and bioinformatics approaches enhance the diagnostic accuracy and therapeutic targeting of BPD.

  • These findings lay the foundation for future translational research in guiding personalized interventions for high-risk neonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Enrichment analysis based on mitophagy-related differentially expressed genes (DEGs).
Fig. 3: Hub genes obtained by machine learning algorithms.
Fig. 4: Interaction analysis of hub genes.
Fig. 5: Differences in immune infiltration between the BPD group and control group.

Similar content being viewed by others

Data availability

The datasets utilized here can be obtained in online repositories. The article/supplementary material lists the names of the repository/repositories as well as respective accession numbers.

References

  1. Guimarães, H. et al. Respiratory outcomes and atopy in school-age children who were preterm at birth, with and without bronchopulmonary dysplasia. Clinical 66, 425–430 (2011).

    Article  Google Scholar 

  2. Dankhara, N., Holla, I., Ramarao, S., Kalikkot & Thekkeveedu, R. Bronchopulmonary dysplasia: pathogenesis and pathophysiology. J. Clin. Med. 12, 4207 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doyle, L. W. et al. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics 118, 108–113 (2006).

    Article  PubMed  Google Scholar 

  4. Farhath, S. et al. Pepsin, a marker of gastric contents, is increased in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Pediatrics 121, e253–e259 (2008).

    Article  PubMed  Google Scholar 

  5. Mohammadi, A., Higazy, R. & Gauda, E. B. PGC-1α activity and mitochondrial dysfunction in preterm infants. Front. Physiol. 13, 997619 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shah, D., Das, P. & Bhandari, V. Mitochondrial dysfunction in bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 197, 1363 (2018).

    Article  PubMed  Google Scholar 

  7. Lu, Y. et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 13, 736–766 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharma, A., Ahmad, S., Ahmad, T., Ali, S. & Syed, M. A. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci. 284, 119876 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. De, R. et al. Acute mental stress induces mitochondrial bioenergetic crisis and hyper-fission along with aberrant mitophagy in the gut mucosa in rodent model of stress-related mucosal disease. Free Radic. Biol. Med. 113, 424–438 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, X. et al. Hyperoxia exposure arrests alveolarization in neonatal rats via PTEN-induced putative kinase 1-Parkin and Nip3-like protein X-mediated mitophagy disorders. Int. J. Mol. Med. 46, 2126–2136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Storti, M. et al. Time-resolved transcriptomic profiling of the developing rabbit’s lungs: Impact of premature birth and implications for modelling bronchopulmonary dysplasia. Respir. Res. 24, 80 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zak, S. M. et al. Clinical outcomes through two years for infants with bronchopulmonary dysplasia and tracheomalacia. Pediatr. Pulmonol. 60, e27383 (2025).

    Article  PubMed  Google Scholar 

  13. Cannavò, L. et al. Oxidative stress and respiratory diseases in preterm newborns. Int. J. Mol. Sci. 22, 12504 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gene Ontology Consortium Gene ontology consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).

    Article  Google Scholar 

  18. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).

    Article  Google Scholar 

  22. Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ru, B. et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics 35, 4200–4202 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Ito, K. & Murphy, D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacomet. Syst. Pharmacol. 2, e79 (2013).

    Article  CAS  Google Scholar 

  25. Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 163, 1723–1729 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Chess, P. R. et al. Pathogenesis of bronchopulmonary dysplasia. Semin. Perinatol. 30, 171–178 (2006).

    Article  PubMed  Google Scholar 

  27. Gilfillan, M., Bhandari, A. & Bhandari, V. Diagnosis and management of bronchopulmonary dysplasia. BMJ 375, n1974 (2021).

    Article  PubMed  Google Scholar 

  28. Shrestha, A. K. et al. Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model. Am. J. Physiol. Lung Cell. Mol. Physiol. 315, L734–L741 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yue, L. & Yao, H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: Pathogenesis and pharmacological targets for chronic lung diseases. Br. J. Pharmacol. 173, 2305–2318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y. et al. Network pharmacology, molecular docking, and experimental verification to reveal the mitophagy-associated mechanism of Tangshen formula in the treatment of diabetic nephropathy. Diabetes Metab. Syndr. Obes. 17, 739–757 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Q. & Liu, C. Mitophagy plays a “double-edged sword” role in the radiosensitivity of cancer cells. J. Cancer Res. Clin. Oncol. 150, 14 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Song, C., Pan, S., Zhang, J., Li, N. & Geng, Q. Mitophagy: a novel perspective for insighting into cancer and cancer treatment. Cell Prolif. 55, e13327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cui, Y. et al. Protein phosphatase 1 regulatory subunit 15 A (PPP1R15A) promoted the progression of gastric cancer by activating cell autophagy under energy stress. J. Exp. Clin. Cancer Res. 44, 52 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clementi, A., Virzì, G. M., Battaglia, G. G. & Ronco, C. Neurohormonal, endocrine, and immune dysregulation and inflammation in cardiorenal syndrome. Cardiorenal Med. 9, 265–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Goob, G., Adrian, J., Cossu, C. & Hauck, C. R. Phagocytosis mediated by the human granulocyte receptor CEACAM3 is limited by the receptor-type protein tyrosine phosphatase PTPRJ. J. Biol. Chem. 298, 102269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuiper, J. W. P., Gregg, H. L., Schüber, M., Klein, J. & Hauck, C. R. Controlling the cytoskeleton during CEACAM3-mediated phagocytosis. Eur. J. Cell Biol. 103, 151384 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Klaile, E. et al. Antibody ligation of CEACAM1, CEACAM3, and CEACAM6 differentially enhance the cytokine release of human neutrophils in responses to Candida albicans. Cell. Immunol. 371, 104459 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Saiz-Gonzalo, G. et al. Regulation of CEACAM family members by IBD-associated triggers in intestinal epithelial cells, their correlation to inflammation and relevance to IBD pathogenesis. Front. Immunol. 12, 655960 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Speer, C. P. Pulmonary inflammation and bronchopulmonary dysplasia. J. Perinatol. 26, S57–S62 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Fang, C., Tu, H., Li, R., Bi, D. & Shu, G. Bronchopulmonary dysplasia: analysis and validation of ferroptosis-related diagnostic biomarkers and immune cell infiltration features. Pediatr. Res. 96, 1673–1680 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Tao, Z. et al. Identification and immunological characterization of endoplasmic reticulum stress-related molecular subtypes in bronchopulmonary dysplasia based on machine learning. Front. Physiol. 13, 1084650 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yin, Z. et al. Zebrafish FKBP5 facilitates apoptosis and SVCV propagation by suppressing NF-κB signaling pathway. Fish. Shellfish Immunol. 155, 110021 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Sun, L. et al. SAL protects endothelial cells from H2O2-induced endothelial dysfunction: regulation of inflammation and autophagy by EZH2. Int. Immunopharmacol. 142, 113060 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Duan, Q. et al. Narciclasine attenuates LPS-induced acute lung injury in neonatal rats through suppressing inflammation and oxidative stress. Bioengineered 11, 801–810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, C. et al. Adipose mesenchymal stem cells-derived exosomes attenuated hyperoxia-induced lung injury in neonatal rats via inhibiting the NF-κB signaling pathway. Pediatr. Pulmonol. 59, 2523–2534 (2024).

    Article  PubMed  Google Scholar 

  46. Wang, M. Y. et al. Over-activation of iNKT cells aggravate lung injury in bronchopulmonary dysplasia mice. Redox Biol. 77, 103370 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Su, W. et al. CXCR6 orchestrates brain CD8+ T cell residency and limits mouse Alzheimer’s disease pathology. Nat. Immunol. 24, 1735–1747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Verma, A. et al. In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Res. 1765, 147503 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Yuan, S., Bi, X., Shayiti, F., Niu, Y. & Chen, P. Relationship between circulating miRNA-222-3p and miRNA-136-5p and the efficacy of docetaxel chemotherapy in metastatic castration-resistant prostate cancer patients. BMC Urol. 24, 275 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, K. et al. Methylation of microRNA-129-5P modulates nucleus pulposus cell autophagy by targeting Beclin-1 in intervertebral disc degeneration. Oncotarget 8, 86264–86276 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shen, C., Yan, J., Jiang, L. S. & Dai, L. Y. Autophagy in rat annulus fibrosus cells: Evidence and possible implications. Arthritis Res. 13, R132 (2011).

    Article  Google Scholar 

  52. Vestre, K. et al. Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity. Cell. Mol. Life Sci. 76, 2593–2614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Q. et al. TRIM56 acts through the IQGAP1-CDC42 signaling axis to promote glioma cell migration and invasion. Cell Death Dis. 14, 178 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saeed, I., La Caze, A., Hollmann, M. W., Shaw, P. N. & Parat, M. O. New insights on tramadol and immunomodulation. Curr. Oncol. Rep. 23, 123 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Webster, L. et al. Understanding buprenorphine for use in chronic pain: Expert opinion. Pain. Med. 21, 714–723 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bokiniec, R., Własienko, P., Borszewska-Kornacka, M. & Szymkiewicz-Dangel, J. Evaluation of left ventricular function in preterm infants with bronchopulmonary dysplasia using various echocardiographic techniques. Echocardiography 34, 567–576 (2017).

    Article  PubMed  Google Scholar 

  57. Wang, C. & Jiang, Z. D. Brainstem auditory abnormality in extremely premature babies and the impact of neonatal bronchopulmonary dysplasia. Acta Obstet. Gynecol. Scand. 97, 545–551 (2018).

    Article  PubMed  Google Scholar 

  58. Yoon, B. H. et al. Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. Am. J. Obstet. Gynecol. 177, 825–830 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all contributors to the GEO database and all the participants who made this research possible.

Funding

Tianjin Health Research Project(TJWJ2022QN089) and The Science & Technolgy Development Fund of Tianjin Education Commission for Higher Education (2024KJ052) supported this work.

Author information

Authors and Affiliations

Authors

Contributions

C.L. overall design and writing of the paper; Y.W. participated in the design of the study and performed the statistical analysis; X.W. contributed analysis tools; Y.L. participated in the revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yalei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The ethics approval is exempted. This study does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, Y., Wang, X. et al. Investigating mitophagy mechanisms in bronchopulmonary dysplasia through bioinformatics. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-025-04319-z

Search

Quick links