Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Population Study Article
  • Published:

Evaluating neonatal cord serum metabolome in association with adolescent cardiometabolic risk factors

Abstract

Background

Risk factors for cardiometabolic disease may have fetal origins, but the biological pathways linking gestational conditions to these risk factors are only partially understood.

Methods

Among 145 Cincinnati-based HOME Study mother-child dyads, we detected 14,384 cord serum metabolic features using liquid chromatography high-resolution mass spectrometry. We measured cardiometabolic risk factors, including visceral fat, serum triglyceride, high-density lipoprotein cholesterol (HDL), leptin, adiponectin, insulin concentration, glucose, and systolic blood pressure (SBP) at age 12 years. Using sparse Partial Least Squares Regression (sPLS-R), we simultaneously modeled the association of metabolic features with all 8 risk factors. We prioritized features with the highest sPLS-R-derived CM risk factor correlations for metabolic pathway enrichment analysis.

Results

We identified two groups of cardiometabolic risk factors in adolescents maximally associated with neonatal metabolic features. The first was visceral fat, triglycerides, HDL, insulin, and leptin; the second was glucose and SBP. The 178 metabolic features with the highest sPLS-R-derived feature-outcome correlations were enriched in 31 pathways related to short-chain fatty acid, vitamins C and B3, and amino acid metabolism, as well as glycolysis and gluconeogenesis.

Conclusions

We identified 31 pathways that may help elucidate underlying mechanisms between fetal environmental stressors and the development of cardiometabolic risk factors.

Impact

  • Using non-targeted metabolomics, we identified neonatal metabolic features linked to two groups of cardiometabolic risk factors in adolescents, suggesting distinct early-life CM risk trajectories and adolescent subphenotypes.

  • One cardiometabolic group was characterized by higher visceral fat, triglycerides, insulin, leptin, as well as lower HDL; the other group was related to elevated glucose and systolic blood pressure.

  • Using a variable selection and data-dimension reduction technique, these two groups were associated with 178 metabolic features and 31 biological pathways related to short-chain fatty acid, vitamins C and B3, and amino acid metabolism, as well as glycolysis and gluconeogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correlation structure between eight cardiometabolic risk outcomes measured at age 12 years and 63 cord serum metabolic features in the space spanned by sparse partial least squares-regression: components 1 and 2.
Fig. 2: Heat map and bipartite graph representing pearson correlations between eight cardiometabolic risk outcomes measured at age 12 years and 178 cord serum metabolic features.
Fig. 3: Metabolic pathways significantly enriched for cord serum metabolic features correlated with adolescent cardiometabolic risk.

Similar content being viewed by others

Data availability

Data are available upon reasonable request. The HOME Study Principal Investigators welcome new collaborations with other investigators and have actively engaged in collaborative data sharing projects. Interested investigators should visit https://homestudy.research.cchmc.org/contact or contact Drs Joseph M. Braun (joseph_braun_1@brown. edu) and Kimberly Yolton (kimberly.yolton@cchmc.org) to obtain additional information about The HOME Study, discuss collaborative opportunities, and request a project proposal form. The HOME Study Protocol Review Committee reviews proposed research projects to ensure that they do not overlap with extant projects and are an efficient use of scarce resources (eg, biospecimens).

References

  1. Benziger, C. P., Roth, G. A. & Moran, A. E. The global burden of disease study and the preventable burden of NCD. Glob. Heart 11, 393–397 (2016).

    Article  PubMed  Google Scholar 

  2. Wang, H. et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016).

    Article  Google Scholar 

  3. Ahmad, F. B. & Anderson, R. N. The leading causes of death in the US for 2020. JAMA 325, 1829–1830 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Heron, M. P. Deaths: leading causes for 2018. Natl. Vital Stat. Rep. 60, 1–94 (2021).

  5. Lurbe, E. et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 34, 1887–1920 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Lurbe, E. & Ingelfinger, J. Developmental and early life origins of cardiometabolic risk factors: novel findings and implications. Hypertension 77, 308–318 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Drozdz, D. et al. Obesity and cardiometabolic risk factors: from childhood to adulthood. Nutrients 13, 4176 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tsao, C. W. et al. Heart disease and stroke statistics—2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. American Diabetes Association Professional Practice Committee. 2. Diagnosis and classification of diabetes: standards of care in diabetes—2024. Diabetes Care 47, S20–S42 (2024).

  10. Magge, S. N. et al. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics 140, e20171603 (2017).

  11. Kelly, A. S. et al. Predicting cardiovascular risk in young adulthood from the metabolic syndrome, its component risk factors, and a cluster score in childhood. Int. J. Pediatr. Obes. 6, e283–e289 (2011).

    Article  PubMed  Google Scholar 

  12. Azab, S. M. et al. Metabolite profiles and the risk of metabolic syndrome in early childhood: a case-control study. BMC Med. 19, 292 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Rinaudo, P. & Wang, E. Fetal programming and metabolic syndrome. Annu Rev. Physiol. 74, 107–130 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Wadhwa, P. D., Buss, C., Entringer, S. & Swanson, J. M. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod. Med. 27, 358–368 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wishart, D. S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev. 99, 1819–1875 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Snyder, B. M. et al. The associations of maternal health characteristics, newborn metabolite concentrations, and child body mass index among US children in the ECHO program. Metabolites 13, 510 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schlueter, R. J. et al. Prepregnant obesity of mothers in a multiethnic cohort is associated with cord blood metabolomic changes in offspring. J. proteome Res. 19, 1361–1374 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Patel, N. et al. Cord metabolic profiles in obese pregnant women: insights into offspring growth and body composition. J. Clin. Endocrinol. Metab. 103, 346–355 (2017).

    Article  PubMed Central  Google Scholar 

  19. Mansell, T. et al. The newborn metabolome: associations with gestational diabetes, sex, gestation, birth mode, and birth weight. Pediatr. Res. 91, 1864–1873 (2022).

    Article  PubMed  CAS  Google Scholar 

  20. Zhao, C. et al. Integrated metabolome analysis reveals novel connections between maternal fecal metabolome and the neonatal blood metabolome in women with gestational diabetes mellitus. Sci. Rep. 10, 3660 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hao, H. et al. The influence of pregnancy-induced hypertension syndrome on the metabolism of newborns. Transl. Pediatr. 10, 296–305 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cajachagua-Torres, K. N. et al. Fetal exposure to maternal smoking and neonatal metabolite profiles. Metabolites 12. https://doi.org/10.3390/metabo12111101 (2022).

  23. Rolle-Kampczyk, U. E. et al. Metabolomics reveals effects of maternal smoking on endogenous metabolites from lipid metabolism in cord blood of newborns. Metabolomics 12, 76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Snyder, B. M. et al. Associations between Smoking and Smoking Cessation during Pregnancy and Newborn Metabolite Concentrations: Findings from PRAMS and INSPIRE Birth Cohorts. Metabolites 13, 1163 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Vidarsdottir, H. et al. Does metabolomic profile differ with regard to birth weight?. Pediatr. Res. 89, 1144–1151 (2021).

    Article  PubMed  CAS  Google Scholar 

  26. Zhai, X. et al. Nontargeted metabolomics reveals the potential mechanism underlying the association between birthweight and metabolic disturbances. BMC Pregnancy Childbirth 23, 1–13 (2023).

    Article  Google Scholar 

  27. Priante, E. et al. Metabolomic profiling of intrauterine growth-restricted preterm infants: a matched case–control study. Pediatr. Res. 93, 1599–1608 (2023).

    Article  PubMed  CAS  Google Scholar 

  28. Wojczakowski, W. et al. Preeclampsia and cardiovascular risk for offspring. J. Clin. Med. 10, 3154 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Joung, K. E., Lee, J. & Kim, J. H. Long-term metabolic consequences of intrauterine growth restriction. Curr. Pediatr. Rep. 8, 45–55 (2020).

    Article  Google Scholar 

  30. Kataria, Y., Gaewsky, L. & Ellervik, C. Prenatal smoking exposure and cardio-metabolic risk factors in adulthood: a general population study and a meta-analysis. Int. J. Obes. 43, 763–773 (2019).

    Article  Google Scholar 

  31. Hrolfsdottir, L. et al. Gestational weight gain in normal weight women and offspring cardio-metabolic risk factors at 20 years of age. Int. J. Obes. 39, 671–676 (2015).

    Article  CAS  Google Scholar 

  32. Cao, T. et al. Cord blood metabolome and BMI trajectory from birth to adolescence: a prospective birth cohort study on early life biomarkers of persistent obesity. Metabolites 11, 739 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang, M. et al. Metabolome-wide association study of cord blood metabolites with blood pressure in childhood and adolescence. Hypertension 79, 2806–2820 (2022).

    Article  PubMed  CAS  Google Scholar 

  34. Hellmuth, C. et al. Cord blood metabolome is highly associated with birth weight, but less predictive for later weight development. Obes. Facts 10, 85–100 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Braun, J. M. et al. Cohort profile: the health outcomes and measures of the environment (HOME) study. Int. J. Epidemiol. 46, 24–24 (2016).

    PubMed Central  Google Scholar 

  36. Braun, J. M. et al. Adolescent follow-up in the health outcomes and measures of the environment (HOME) study: cohort profile. BMJ Open 10, e034838 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hall, A. M. et al. Associations of a prenatal serum per-and polyfluoroalkyl substance mixture with the cord serum metabolome in the HOME study. Environ. Sci. Technol. 57, 21627–21636 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kingsley, S. L. et al. Metabolomics of childhood exposure to perfluoroalkyl substances: a cross-sectional study. Metabolomics 15, 1–12 (2019).

    Article  CAS  Google Scholar 

  39. Liu, K. H. et al. Reference standardization for quantification and harmonization of large-scale metabolomics. Anal. Chem. 92, 8836–8844 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yu, T., Park, Y., Johnson, J. M. & Jones, D. P. apLCMS—adaptive processing of high-resolution LC/MS data. Bioinformatics 25, 1930–1936 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Deng, K. et al. WaveICA 2.0: a novel batch effect removal method for untargeted metabolomics data without using batch information. Metabolomics 17, 1–8 (2021).

    Article  Google Scholar 

  42. Li, N. et al. Gestational and childhood exposure to per-and polyfluoroalkyl substances and cardiometabolic risk at age 12 years. Environ. Int. 147, 106344 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lacruz, M. E. et al. Short-term blood pressure variability–variation between arm side, body position and successive measurements: a population-based cohort study. BMC Cardiovasc. Disord. 17, 1–9 (2017).

    Article  Google Scholar 

  44. Braun, J. M. et al. Gestational perfluoroalkyl substance exposure and body mass index trajectories over the first 12 years of life. Int. J. Obes. 45, 25–35 (2021).

    Article  CAS  Google Scholar 

  45. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lê Cao, K.-A., Rossouw, D., Robert-Granié, C. & Besse, P. A sparse PLS for variable selection when integrating omics data. Stat. Appl. Genet. Mol. Biol. 7, 35 (2008).

  47. Chun, H. & Keleş, S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Ser. B Stat. Methodol. 72, 3–25 (2010).

    Article  Google Scholar 

  48. González, I., Cao, K.-A. L., Davis, M. J. & Déjean, S. Visualising associations between paired ‘omics’ data sets. BioData Min. 5, 1–23 (2012).

    Article  Google Scholar 

  49. Pang, Z. et al. MetaboAnalystR 4.0: a unified LC-MS workflow for global metabolomics. Nat. Commun. 15, 3675 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).

  51. Steinberger, J. et al. Cardiovascular health promotion in children: challenges and opportunities for 2020 and beyond: a scientific statement from the American Heart Association. Circulation 134, e236–e255 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stefan, N. & Schulze, M. B. Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment. Lancet Diabetes Endocrinol. 11, 426–440 (2023).

    Article  PubMed  CAS  Google Scholar 

  53. Tripathi, P. et al. Comparison of clustering and phenotyping approaches for subclassification of type 2 diabetes and its association with remission in Indian population. Sci. Rep. 14, 20260 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wagner, R. et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat. Med. 27, 49–57 (2021).

    Article  PubMed  CAS  Google Scholar 

  55. Beyene, H. B. et al. Metabolic phenotyping of BMI to characterize cardiometabolic risk: evidence from large population-based cohorts. Nat. Commun. 14, 6280 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Schulze, M. B. & Stefan, N. Metabolically healthy obesity: from epidemiology and mechanisms to clinical implications. Nat. Rev. Endocrinol. 20, 633–646 (2024).

  57. Zhan, J. et al. Left ventricular myocardial work indices in pediatric hypertension: correlations with conventional echocardiographic assessment and subphenotyping. Eur. J. Pediatr. 181, 2643–2654 (2022).

    Article  PubMed  Google Scholar 

  58. Melka, M. G. et al. Clustering of the metabolic syndrome components in adolescence: role of visceral fat. PLoS ONE 8, e82368 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yuan, W. L. et al. The adverse influence of maternal glycaemia during pregnancy on offspring's cardiometabolic health profiles. Acta Paediatr. 114, 2287–2297 (2025).

  60. Rice, M. M. et al. Pregnancy-associated hypertension and offspring cardiometabolic health. Obstet. Gynecol. 131, 313–321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Macfarlane, S. & Macfarlane, G. T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67–72 (2003).

    Article  PubMed  CAS  Google Scholar 

  62. Chang, Y. et al. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin. Sci. 134, 289–302 (2020).

    Article  CAS  Google Scholar 

  63. Li, J. et al. The diagnostic potential of gut microbiota-derived short-chain fatty acids in preeclampsia. Front. Pediatr. 10, 878924 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gomez-Arango, L. F. et al. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68, 974–981 (2016).

    Article  PubMed  CAS  Google Scholar 

  65. Priyadarshini, M. et al. Maternal short-chain fatty acids are associated with metabolic parameters in mothers and newborns. Transl. Res. 164, 153–157 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Coppola, S. et al. Therapeutic effects of butyrate on pediatric obesity: a randomized clinical trial. JAMA Netw. Open 5, e2244912–e2244912 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article  PubMed  CAS  Google Scholar 

  68. Goffredo, M. et al. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth. J. Clin. Endocrinol. Metab. 101, 4367–4376 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Solinas, G., Borén, J. & Dulloo, A. G. De novo lipogenesis in metabolic homeostasis: More friend than foe?. Mol. Metab. 4, 367–377 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Miller, T. L. & Wolin, M. J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 62, 1589–1592 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Dasgupta, S. et al. Discovery of novel metabolic signatures for early identification of women at risk of developing gestational hypertension. Metabolomics 19, 50 (2023).

    Article  PubMed  CAS  Google Scholar 

  72. Menon, R. et al. Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reprod. Sci. 21, 791–803 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gui, S. et al. Arginine supplementation for improving maternal and neonatal outcomes in hypertensive disorder of pregnancy: a systematic review. J. ReninAngiotensinAldosterone Syst. 15, 88–96 (2014).

    CAS  Google Scholar 

  74. Zhao, J. et al. Causal effects of maternal circulating amino acids on offspring birthweight: a Mendelian randomisation study. EBioMedicine 88, 104441 (2023).

  75. De Spiegeleer, M. et al. Paediatric obesity: a systematic review and pathway mapping of metabolic alterations underlying early disease processes. Mol. Med. 27, 1–20 (2021).

    Article  Google Scholar 

  76. Liang, H. & Song, K. Elucidating ascorbate and aldarate metabolism pathway characteristics via integration of untargeted metabolomics and transcriptomics of the kidney of high-fat diet-fed obese mice. Plos ONE 19, e0300705 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Roberts, J. M. et al. Vitamins C and E to prevent complications of pregnancy-associated hypertension. N. Engl. J. Med. 362, 1282–1291 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. García, O. P. et al. Zinc, iron and vitamins A, C and E are associated with obesity, inflammation, lipid profile and insulin resistance in Mexican school-aged children. Nutrients 5, 5012–5030 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ashor, A. W. et al. Limited evidence for a beneficial effect of vitamin C supplementation on biomarkers of cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses. Nutr. Res. 61, 1–12 (2019).

    Article  PubMed  CAS  Google Scholar 

  80. Takahashi, N. et al. Vitamin B3 nicotinamide: a promising candidate for treating preeclampsia and improving fetal growth. Tohoku J. Exp. Med. 244, 243–248 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Georgakopoulou, I. et al. Metabolic changes in early neonatal life: NMR analysis of the neonatal metabolic profile to monitor postnatal metabolic adaptations. Metabolomics 16, 1–12 (2020).

    Article  Google Scholar 

  82. Knapen, M. F., Zusterzeel, P. L., Peters, W. H. & Steegers, E. A. Glutathione and glutathione-related enzymes in reproduction: a review. Eur. J. Obstet. Gynecol. Reprod. Biol. 82, 171–184 (1999).

    Article  PubMed  CAS  Google Scholar 

  83. Fragoso, M. B. T. et al. Biomarkers of inflammation and redox imbalance in umbilical cord in pregnancies with and without preeclampsia and consequent perinatal outcomes. Oxidative Med. Cell. Longev. 2021, 9970627 (2021).

  84. Küster, A. et al. Cord blood glutathione depletion in preterm infants: correlation with maternal cysteine depletion. PLoS One 6, e27626 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jain, A. et al. Glutathione metabolism in newborns: evidence for glutathione deficiency in plasma, bronchoalveolar lavage fluid, and lymphocytes in prematures. Pediatr. Pulmonol. 20, 160–166 (1995).

    Article  PubMed  CAS  Google Scholar 

  86. Alkazemi, D., Rahman, A. & Habra, B. Alterations in glutathione redox homeostasis among adolescents with obesity and anemia. Sci. Rep. 11, 3034 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gou, R. & Zhang, X. Glycolysis: a fork in the path of normal and pathological pregnancy. FASEB J. 37, e23263 (2023).

    Article  PubMed  CAS  Google Scholar 

  88. Donauer, S. et al. An observational study to evaluate associations between low-level gestational exposure to organophosphate pesticides and cognition during early childhood. Am. J. Epidemiol. 184, 410–418 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Valo, E. et al. Effect of serum sample storage temperature on metabolomic and proteomic biomarkers. Sci. Rep. 12, 4571 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wagner-Golbs, A. et al. Effects of long-term storage at −80 °C on the human plasma metabolome. Metabolites 9, 99 (2019).

Download references

Funding

This work was supported by National Institute of Environmental Health Sciences grants R01 ES032386, R01 ES025214, P01 ES011261, R01 ES014575, R01 ES020349, R01 ES027224, R01 ES030078 and R01 ES033252.

Author information

Authors and Affiliations

Authors

Contributions

G.D.P., E.S.C.F., and J.M.B. conceptualized the study. K.M., K.P., D.W., K.Y., and K.C. acquired the data. G.D.P. and E.S.C.F. analyzed the data. G.D.P., E.S.C.F., and J.M.B. interpreted the data. E.S.C.F. and G.D.P. drafted the article. K.E.M., K.P., A.M.H., A.C., J.P.B., K.Y., K.M.C., B.P.L., C.B.E., D.I.W., and J.M.B. revised it critically for important intellectual content. E.S.C.F., G.D.P., K.E.M., K.P., A.M.H., A.C., J.P.B., K.Y., K.M.C., B.P.L., C.B.E., D.I.W., and J.M.B. approved the final version to be published.

Corresponding author

Correspondence to Joseph M. Braun.

Ethics declarations

Competing interests

Joseph Braun was compensated for serving as an expert witness for plaintiffs in litigation related to PFAS-contaminated drinking water.

Consent statement

The Institutional Review Boards (IRBs) of Cincinnati Children’s Hospital Medical Center (CCHMC) and all delivery hospitals approved the study protocol. The Centers for Disease Control and Prevention and Brown University deferred to the CCHMC IRB as the IRB of record. Women provided written informed consent for themselves and their children. Children provided written assent at the age 12 visit.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleury, E.S., Papandonatos, G.D., Manz, K.E. et al. Evaluating neonatal cord serum metabolome in association with adolescent cardiometabolic risk factors. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04322-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04322-4

Search

Quick links