Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Population Study Article
  • Published:

Extracurricular physical activity and telomere length in childhood: findings from the INMA study

Abstract

Background

Evidence on the link between physical activity (PA) and telomere length (TL) in childhood is scarce and inconsistent. This study examined the association between extracurricular PA at age 4 and changes in TL ranking from 4 to 8 years.

Methods

Longitudinal data from 547 children in the INMA birth cohort study (ages 4–8) were analyzed. Parent-reported extracurricular PA at age 4 was used to calculate metabolic equivalents (METs) in hours per day and categorized into tertiles (low, middle, and high). Leukocyte TL was measured at ages 4 and 8 using qPCR, with the primary outcome being the percentage change in TL ranking between ages 4 and 8. Multiple robust regression models were used for the main analyses.

Results

Children in the highest tertile of extracurricular PA (11.9–31.0 METs h/day) showed a significant 2.25% increase (95% CI: 0.01, 4.48; p = 0.04) in TL ranking between 4 and 8 years compared to the lowest tertile (2.2–7.8 METs h/day). No association was observed for moderate extracurricular PA (i.e., middle tertile) levels.

Conclusions

Higher levels of extracurricular PA were prospectively associated with TL rank changes from 4 to 8 years, suggesting its potential to reduce cellular damage and support healthy ageing.

Impact

  • Research shows an association between PA and TL maintenance in adults, but evidence in childhood is limited and inconsistent.

  • This study investigates the association between extracurricular PA and changes in TL ranking in children aged 4–8 years, finding that higher PA levels are linked to increased TL ranking, possibly slowing telomere shortening.

  • Findings support promoting PA in childhood to enhance cellular health and reduce chronic disease risk.

  • Results can inform strategies by healthcare professionals, educators, and policymakers to encourage PA in children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow study diagram.

Similar content being viewed by others

Data availability

Researchers interested in accessing this data may submit a formal request to the corresponding author. All such requests will be thoroughly reviewed by the research team, and a data transfer agreement will be required prior to any data sharing.

References

  1. Blackburn, E. H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    Article  PubMed  Google Scholar 

  2. O’Sullivan, R. J. & Karlseder, J. Telomeres: protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 11, 171–181 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shammas, M. A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 14, 28–34 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Wang, Q., Zhan, Y., Pedersen, N. L., Fang, F. & Hägg, S. Telomere length and all-cause mortality: a meta-analysis. Ageing Res. Rev. 48, 11–20 (2018).

    Article  PubMed  Google Scholar 

  5. Fyhrquist, F., Saijonmaa, O. & Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nat. Rev. Cardiol. 10, 274–283 (2013).

    Article  PubMed  Google Scholar 

  6. Dugdale, H. L. & Richardson, D. S. Heritability of telomere variation: it is all about the environment! Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20160450 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reichert, S. & Stier, A. Does oxidative stress shorten telomeres in vivo? A review. Biol. Lett. 13, 20170463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kordinas, V., Ioannidis, A. & Chatzipanagiotou, S. The telomere/telomerase system in chronic inflammatory diseases. Cause or effect? Genes 7, 60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zong, Z.-Q. et al. Ambient air pollution exposure and telomere length: a systematic review and meta-analysis. Public Health 215, 42–55 (2023).

    Article  PubMed  Google Scholar 

  10. Osorio-Yáñez, C. et al. Early life tobacco exposure and children’s telomere length: the HELIX project. Sci. Total Environ. 711, 135028 (2020).

    Article  PubMed  Google Scholar 

  11. Valera-Gran, D. et al. The impact of foods, nutrients, or dietary patterns on telomere length in childhood and adolescence: a systematic review. Nutrients 14, 3885 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bountziouka, V. et al. Modifiable traits, healthy behaviours, and leukocyte telomere length: a population-based study in UK Biobank. Lancet Healthy Longev. 3, e321–e331 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Semeraro, M. D. et al. Physical activity, a modulator of aging through effects on telomere biology. Aging 12, 13803–13823 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rebelo-Marques, A. et al. Aging hallmarks: the benefits of physical exercise. Front. Endocrinol. 9, 258 (2018).

    Article  Google Scholar 

  15. Daskalopoulou, C. et al. Physical activity and healthy ageing: a systematic review and meta-analysis of longitudinal cohort studies. Ageing Res. Rev. 38, 6–17 (2017).

    Article  PubMed  Google Scholar 

  16. Garatachea, N. et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 18, 57–89 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Watts, E. L. et al. Association of leisure time physical activity types and risks of all-cause, cardiovascular, and cancer mortality among older adults. JAMA Netw. Open 5, e2228510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arsenis, N. C., You, T., Ogawa, E. F., Tinsley, G. M. & Zuo, L. Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget 8, 45008–45019 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schellnegger, M., Lin, A. C., Hammer, N. & Kamolz, L.-P. Physical activity on telomere length as a biomarker for aging: a systematic review. Sports Med. Open 8, 111 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Santovito, A., Agostinovna Nigretti, A., Sellitri, A., Scarfò, M. & Nota, A. Regular sport activity is able to reduce the level of genomic damage. Biology 12, 1110 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aubert, G., Baerlocher, G. M., Vulto, I., Poon, S. S. & Lansdorp, P. M. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 8, e1002696 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guxens, M. et al. Cohort profile: the INMA-INfancia y Medio Ambiente-(Environment and Childhood) Project. Int. J. Epidemiol. 41, 930–940 (2012).

    Article  PubMed  Google Scholar 

  23. Ridley, K., Ainsworth, B. E. & Olds, T. S. Development of a compendium of energy expenditures for youth. Int. J. Behav. Nutr. Phys. Act. 5, 45 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Telomere Research Network. Study design & analysis. https://trn.tulane.edu/resources/study-design-analysis/ (2023).

  26. Notario-Barandiaran, L. et al. High adherence to a Mediterranean diet at age 4 reduces overweight, obesity and abdominal obesity incidence in children at the age of 8. Int. J. Obes. 44, 1906–1917 (2020).

    Article  Google Scholar 

  27. Monteiro, C. A. et al. NOVA. The star shines bright. World Nutr. 7, 28–38 (2016).

    Google Scholar 

  28. Vioque, J. et al. Reproducibility and validity of a food frequency questionnaire designed to assess diet in children aged 4-5 years. PLoS ONE 11, e0167338 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maechler, M. et al. robustbase: Basic robust statistics (CRAN, 2021).

  30. Bijnens, E. M. et al. Telomere tracking from birth to adulthood and residential traffic exposure. BMC Med. 15, 205 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Balduzzi, S., Rücker, G. & Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. Evid. Based Ment. Health 22, 153–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ 327, 557–560 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Canudas, S. et al. Mediterranean diet and telomere length: a systematic review and meta-analysis. Adv. Nutr. 11, 1544–1554 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Petermann-Rocha, F. et al. Children who sleep more may have longer telomeres: evidence from a longitudinal population study in Spain. Pediatr. Res. 93, 1419–1424 (2023).

    Article  PubMed  Google Scholar 

  35. Martens, D. S., Plusquin, M., Gyselaers, W., De Vivo, I. & Nawrot, T. S. Maternal pre-pregnancy body mass index and newborn telomere length. BMC Med. 14, 148 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Belfort, M. B. et al. Telomere length shortening in hospitalized preterm infants: a pilot study. PLoS ONE 16, e0243468 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. De Ruyter, T. et al. A multi-exposure approach to study telomere dynamics in childhood: a role for residential green space and waist circumference. Environ. Res. 213, 113656 (2022).

    Article  PubMed  Google Scholar 

  38. Zhu, H. et al. Leukocyte telomere length in healthy White and Black adolescents: relations to race, sex, adiposity, adipokines and physical activity. J. Pediatr. 158, 215–220 (2011).

    Article  PubMed  Google Scholar 

  39. García-Calzón, S. et al. Telomere length as a biomarker for adiposity changes after a multidisciplinary intervention in overweight/obese adolescents: the EVASYON study. PLoS ONE 9, e89828 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ojeda-Rodríguez, A. et al. Association between favourable changes in objectively measured physical activity and telomere length after a lifestyle intervention in pediatric patients with abdominal obesity. Appl. Physiol. Nutr. Metab. 46, 205–212 (2021).

    Article  PubMed  Google Scholar 

  41. Paltoglou, G. et al. A comprehensive, multidisciplinary, personalized, lifestyle intervention program is associated with increased leukocyte telomere length in children and adolescents with overweight and obesity. Nutrients 13, 2682 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Delisle Nyström, C., Migueles, J. H., Henriksson, P. & Löf, M. Physical activity and cardiovascular risk factors in children from 4 to 9 years of age. Sports Med. Open 9, 99 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. García-Hermoso, A., Ezzatvar, Y., Ramírez-Vélez, R., Olloquequi, J. & Izquierdo, M. Is device-measured vigorous physical activity associated with health-related outcomes in children and adolescents? A systematic review and meta-analysis. J. Sport Health Sci. 10, 296–307 (2021).

    Article  PubMed  Google Scholar 

  44. Migueles, J. H., Delisle Nyström, C., Leppänen, M. H., Henriksson, P. & Löf, M. Revisiting the cross-sectional and prospective association of physical activity with body composition and physical fitness in preschoolers: a compositional data approach. Pediatr. Obes. 17, e12909 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Reisberg, K., Riso, E.-M. & Jürimäe, J. Associations between physical activity, body composition, and physical fitness in the transition from preschool to school. Scand. J. Med. Sci. Sports 30, 2251–2263 (2020).

    Article  PubMed  Google Scholar 

  46. Ried-Larsen, M. et al. Associations between objectively measured physical activity intensity in childhood and measures of subclinical cardiovascular disease in adolescence: prospective observations from the European Youth Heart Study. Br. J. Sports Med. 48, 1502–1507 (2014).

    Article  PubMed  Google Scholar 

  47. Väistö, J. et al. Longitudinal associations of physical activity and sedentary time with cardiometabolic risk factors in children. Scand. J. Med. Sci. Sports 29, 113–123 (2019).

    Article  PubMed  Google Scholar 

  48. Ortega, F. B., Ruiz, J. R., Castillo, M. J. & Sjöström, M. Physical fitness in childhood and adolescence: a powerful marker of health. Int. J. Obes. 32, 1–11 (2008).

    Article  Google Scholar 

  49. Skrede, T., Steene-Johannessen, J., Anderssen, S. A., Resaland, G. K. & Ekelund, U. The prospective association between objectively measured sedentary time, moderate-to-vigorous physical activity and cardiometabolic risk factors in youth: a systematic review and meta-analysis. Obes. Rev. 20, 55–74 (2019).

    Article  PubMed  Google Scholar 

  50. Chaput, J.-P. et al. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5-17 years: summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 17, 141 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim, J. J., Ahn, A., Ying, J., Hickman, E. & Ludlow, A. T. Exercise as a therapy to maintain telomere function and prevent cellular senescence. Exerc. Sport Sci. Rev. 51, 150–160 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mundstock, E. et al. Effects of physical activity in telomere length: systematic review and meta-analysis. Ageing Res. Rev. 22, 72–80 (2015).

    Article  PubMed  Google Scholar 

  53. Sellami, M., Bragazzi, N., Prince, M. S., Denham, J. & Elrayess, M. Regular, intense exercise training as a healthy aging lifestyle strategy: preventing DNA damage, telomere shortening and adverse DNA methylation changes over a lifetime. Front. Genet. 12, 652497 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sarker, H. et al. Validation of parent-reported physical activity and sedentary time by accelerometry in young children. BMC Res. Notes 8, 735 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Telama, R. et al. Tracking of physical activity from early childhood through youth into adulthood. Med. Sci. Sports Exerc. 46, 955–962 (2014).

    Article  PubMed  Google Scholar 

  56. García-Hermoso, A., Izquierdo, M. & Ramírez-Vélez, R. Tracking of physical fitness levels from childhood and adolescence to adulthood: a systematic review and meta-analysis. Transl. Pediatr. 11, 386–401 (2022).

    Article  Google Scholar 

Download references

Funding

This research was funded by Instituto de Salud Carlos III/Agencia Estatal de Investigación, grant number PI18/00825 Project: “Dieta y actividad física en embarazo y tras el nacimiento y longitud del telómero en niños y adolescentes: Proyecto TeloDiPA” and Unión Europea (FEDER) “Una manera de hacer Europa”; grant number PI15/00118: “Exposiciones ambientales a edad temprana y riesgo cardiovascular del adolescente (INMA-Cardio); and Generalitat Valenciana (GVA/2021/191). ISGlobal acknowledges support from the grant CEX2018-000806-S funded by MCIN/AEI/10.13039/501100011033, and support from the Generalitat de Catalunya through the CERCA Program.

Author information

Authors and Affiliations

Authors

Contributions

This study was conceptualized and designed by E.-M.N.-M. and D.V.-G. D.P.-B., D.S.M., and T.N. performed the acquisition, analysis, and interpretation of data. The formal statistical analysis was conducted by D.P.-B. and E.-M.N.-M. D.V.-G. and D.P.-B. prepared the first manuscript draft. Following drafts and the final manuscript version were written by D.V.-G. All authors critically reviewed the final manuscript and approved its submission to the journal. E.-M.N.-M. and D.V.-G. supervised the development of the study. E.-M.N.-M. is the guarantor.

Corresponding author

Correspondence to Desirée Valera-Gran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of General Hospital of the Department of Health of Alicante (protocol code Acta 2019/07 and date of approval on 31st July 2019). All parents/legal tutors provided their written consent at each phase of the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valera-Gran, D., Prieto-Botella, D., Martens, D.S. et al. Extracurricular physical activity and telomere length in childhood: findings from the INMA study. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04445-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-025-04445-8

This article is cited by

Search

Quick links