Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of machine learning in autism spectrum disorder assessment and management

Abstract

Autism Spectrum Disorder (ASD) presents significant challenges in diagnosis and treatment, driven by its heterogeneous nature and complex aetiology. Recent advances in machine learning (ML) have facilitated exploration of novel approaches to ASD detection, stratification, and intervention opportunities. This narrative review explores the current ML and artificial intelligence (AI) research landscape across several key domains, including early ASD screening, phenotypic stratification, diagnostic biomarkers, neuroimaging, personalised therapies, and the role of automation and robotics in the treatment of this complex condition. Detailed analyses of these approaches emphasise the transformative but not yet realised potential of ML to improve outcomes for individuals with ASD.

Impact

  • Highlights emerging trends, including multimodal AI integration, digital phenotyping, and use of AI to achieve biomarker-driven precision medicine.

  • Provides first comprehensive synthesis of AI advancements in screening, diagnosis and treatment of ASD.

  • Identifies current gaps in AI ASD research, such as dataset heterogeneity, validation issues, and clinical trust barriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Hodges, H., Fealko, C. & Soares, N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr. 9, S55–s65 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders: DSM-5™, 5th Ed (American Psychiatric Publishing, Inc., 2013).

  3. Shaw, K. A. et al. Prevalence and early identification of autism spectrum disorder among children aged 4 and 8 years—autism and developmental disabilities monitoring network, 16 sites, United States, 2022. 1–22 (2025).

  4. Johnson, C. P. & Myers, S. M. Identification and evaluation of children with autism spectrum disorders. Pediatrics 120, 1183–1215 (2007).

    Article  PubMed  Google Scholar 

  5. Thabtah, F. & Peebles, D. Early autism screening: a comprehensive review. Int J. Environ. Res. Public Health 16 (2019).

  6. Mazurek, M. O., Kuhlthau, K., Parker, R. A., Chan, J. & Sohl, K. Autism and general developmental screening practices among primary care providers. J. Dev. Behav. Pediatr. 42, 355–362 (2021).

    Article  PubMed  Google Scholar 

  7. Wankhede, N. et al. Leveraging AI for the diagnosis and treatment of autism spectrum disorder: current trends and future prospects. Asian J. Psychiatr. 101, 104241 (2024).

    Article  PubMed  Google Scholar 

  8. Song, D. Y., Kim, S. Y., Bong, G., Kim, J. M. & Yoo, H. J. The use of artificial intelligence in screening and diagnosis of autism spectrum disorder: a literature review. Soa Chongsonyon Chongsin Uihak 30, 145–152 (2019).

    PubMed  PubMed Central  Google Scholar 

  9. Villamarín, A. et al. in Proceedings of International Conference on Intelligent Vision and Computing (ICIVC 2023). (Saha, A. K., Sharma, H. & Prasad, M. eds.) 21–32 (Springer Nature, 2023).

  10. Tang, X. et al. Screening biomarkers for autism spectrum disorder using plasma proteomics combined with machine learning methods. Clin. Chim. Acta 565, 120018 (2025).

    Article  CAS  PubMed  Google Scholar 

  11. Bekbolatova, M., Mayer, J., Ong, C. W. & Toma, M. Transformative potential of AI in healthcare: definitions, applications, and navigating the ethical landscape and public perspectives. Healthcare 12 (2024).

  12. Lipkin, P. H. & Macias, M. M. Promoting optimal development: identifying infants and young children with developmental disorders through developmental surveillance and screening. Pediatrics 145 (2020).

  13. Sobieski, M., Sobieska, A., Sekułowicz, M. & Bujnowska-Fedak, M. M. Tools for early screening of autism spectrum disorders in primary health care—a scoping review. BMC Prim. Care 23, 46 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marlow, M., Servili, C. & Tomlinson, M. A review of screening tools for the identification of autism spectrum disorders and developmental delay in infants and young children: recommendations for use in low- and middle-income countries. Autism Res. 12, 176–199 (2019).

    Article  PubMed  Google Scholar 

  15. Kamp-Becker, I. et al. Diagnostic accuracy of the Ados and Ados-2 in clinical practice. Eur. Child Adolesc. Psychiatry 27, 1193–1207 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, S. H. & Lord, C. New autism diagnostic interview-revised algorithms for toddlers and young preschoolers from 12 to 47 months of age. J. Autism Dev. Disord. 42, 82–93 (2012).

    Article  PubMed  Google Scholar 

  17. Wall, D. P., Kosmicki, J., Deluca, T. F., Harstad, E. & Fusaro, V. A. Use of machine learning to shorten observation-based screening and diagnosis of autism. Transl. Psychiatry 2, e100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kosmicki, J. A., Sochat, V., Duda, M. & Wall, D. P. Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl. Psychiatry 5, e514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levy, S., Duda, M., Haber, N. & Wall, D. P. Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism. Mol. Autism 8, 65 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. van ‘t Hof, M. et al. Age at autism spectrum disorder diagnosis: a systematic review and meta-analysis from 2012 to 2019. Autism 25, 862–873 (2021).

    Article  PubMed  Google Scholar 

  21. Zuckerman, K., Lindly, O. J. & Chavez, A. E. Timeliness of autism spectrum disorder diagnosis and use of services among U.S. elementary school-aged children. Psychiatr. Serv. 68, 33–40 (2017).

    Article  PubMed  Google Scholar 

  22. Dimian, A. F., Symons, F. J. & Wolff, J. J. Delay to early intensive behavioral intervention and educational outcomes for a medicaid-enrolled cohort of children with autism. J. Autism Dev. Disord. 51, 1054–1066 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mateos-Pérez, J. M. et al. Structural neuroimaging as clinical predictor: a review of machine learning applications. Neuroimage Clin. 20, 506–522 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moridian, P. et al. Automatic Autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: a review. Front. Mol. Neurosci. 15, 999605 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Washington, P. & Wall, D. P. A review of and roadmap for data science and machine learning for the neuropsychiatric phenotype of autism. Annu. Rev. Biomed. Data Sci. 6, 211–228 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. França, R. P., Borges Monteiro, A. C., Arthur, R. & Iano, Y. in Trends in Deep Learning Methodologies (Piuri, V., Raj, S., Genovese, A. & Srivastava, R. eds.) 63–87 (Academic Press, 2021).

  27. Marciano, F. et al. Artificial intelligence: the ‘Trait D’union” in different analysis approaches of autism spectrum disorder studies. Curr. Med. Chem. 28, 6591–6618 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Cortese, S. et al. Latest clinical frontiers related to autism diagnostic strategies. Cell Rep. Med 6, 101916 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Varoquaux, G, C. O. Evaluating Machine Learning Models and Their Diagnostic Value, Vol. 20 (Humana, 2023).

  30. Bradshaw, T. J., Huemann, Z., Hu, J. & Rahmim, A. A guide to cross-validation for artificial intelligence in medical imaging. Radio. Artif. Intell. 5, e220232 (2023).

    Article  Google Scholar 

  31. Wilimitis, D. & Walsh, C. G. Practical considerations and applied examples of cross-validation for model development and evaluation in health care: tutorial. JMIR AI 2, e49023 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cabitza, F. et al. The importance of being external. methodological insights for the external validation of machine learning models in medicine. Comput. Methods Prog. Biomed. 208, 106288 (2021).

    Article  Google Scholar 

  33. Collins, G. S. et al. Tripod+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 385, e078378 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ho, S. Y., Phua, K., Wong, L. & Bin Goh, W. W. Extensions of the external validation for checking learned model interpretability and generalizability. Patterns 1, 100129 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Crippa, A. et al. Use of machine learning to identify children with autism and their motor abnormalities. J. Autism Dev. Disord. 45, 2146–2156 (2015).

    Article  PubMed  Google Scholar 

  36. Wan, G. et al. Applying eye tracking to identify autism spectrum disorder in children. J. Autism Dev. Disord. 49, 209–215 (2019).

    Article  PubMed  Google Scholar 

  37. Alcañiz, M. et al. Eye gaze as a biomarker in the recognition of autism spectrum disorder using virtual reality and machine learning: a proof of concept for diagnosis. Autism Res. 15, 131–145 (2022).

    Article  PubMed  Google Scholar 

  38. Dufour, M. M., Lanovaz, M. J. & Cardinal, P. Artificial intelligence for the measurement of vocal stereotypy. J. Exp. Anal. Behav. 114, 368–380 (2020).

    Article  PubMed  Google Scholar 

  39. Voinsky, I., Fridland, O. Y., Aran, A., Frye, R. E. & Gurwitz, D. Machine learning-based blood Rna signature for diagnosis of autism spectrum disorder. Int. J. Mol. Sci. 24 (2023).

  40. Koehler, J. C. et al. Classifying autism in a clinical population based on motion synchrony: a proof-of-concept study using real-life diagnostic interviews. Sci. Rep. 14, 5663 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Préfontaine, I., Lanovaz, M. J. & Rivard, M. Brief Report: Machine learning for estimating prognosis of children with autism receiving early behavioral intervention-a proof of concept. J. Autism Dev. Disord. 54, 1605–1610 (2024).

    Article  PubMed  Google Scholar 

  42. Achenie, L. E. K. et al. A machine learning strategy for autism screening in toddlers. J. Dev. Behav. Pediatr. 40, 369–376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tartarisco, G. et al. Use of Machine Learning to investigate the quantitative checklist for autism in toddlers (Q-Chat) towards early autism screening. Diagnostics 11 (2021).

  44. Lu, H. et al. A machine learning model based on Chat-23 for early screening of autism in Chinese children. Front. Pediatr. 12, 1400110 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Engelhard, M. M. et al. Predictive value of early autism detection models based on electronic health record data collected before age 1 year. JAMA Netw. Open 6, e2254303–e2254303 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sohl, K. et al. Feasibility and impact of integrating an artificial intelligence-based diagnosis aid for autism into the extension for community health outcomes autism primary care model: protocol for a prospective observational study. JMIR Res. Protoc. 11, e37576 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li, Y. et al. Machine learning prediction of autism spectrum disorder through linking mothers’ and children’s electronic health record data. medRxiv (2024).

  48. Maenner, M. J., Yeargin-Allsopp, M., Van Naarden Braun, K., Christensen, D. L. & Schieve, L. A. Development of a machine learning algorithm for the surveillance of autism spectrum disorder. PLoS One 11, e0168224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Betts, K. S., Chai, K., Kisely, S. & Alati, R. Development and validation of a machine learning-based tool to predict autism among children. Autism Res. 16, 941–952 (2023).

    Article  PubMed  Google Scholar 

  50. Lingren, T. et al. Electronic health record-based algorithm to identify patients with autism spectrum disorder. PLoS One 11, e0159621 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Parikh, M. N., Li, H. & He, L. Enhancing diagnosis of autism with optimized machine learning models and personal characteristic data. Front. Comput. Neurosci. 13, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ben-Sasson, A. et al. A prediction model of autism spectrum diagnosis from well-baby electronic data using machine learning. Children 11 (2024).

  53. Chen, J. et al. Enhancing early autism prediction based on electronic records using clinical narratives. J. Biomed. Inform. 144, 104390 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rajagopalan, S. S., Zhang, Y., Yahia, A. & Tammimies, K. machine learning prediction of autism spectrum disorder from a minimal set of medical and background information. JAMA Netw. Open 7, e2429229 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Anzulewicz, A., Sobota, K. & Delafield-Butt, J. T. Toward the autism motor signature: gesture patterns during smart tablet gameplay identify children with autism. Sci. Rep. 6, 31107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pradhan, A., Chester, V. & Padhiar, K. Classification of autism and control gait in children using multisegment foot kinematic features. Bioengineering 9 (2022).

  57. Perochon, S. et al. Early detection of autism using digital behavioral phenotyping. Nat. Med. 29, 2489–2497 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thevenot, J., Lopez, M. B. & Hadid, A. A survey on computer vision for assistive medical diagnosis from faces. IEEE J. Biomed. Health Inf. 22, 1497–1511 (2018).

    Article  Google Scholar 

  59. Elbattah, M., Carette, R., Dequen, G., Guerin, J. L. & Cilia, F. Learning clusters in autism spectrum disorder: image-based clustering of eye-tracking scanpaths with Deep Autoencoder. Annu Int Conf. IEEE Eng. Med Biol. Soc. 2019, 1417–1420 (2019).

    PubMed  Google Scholar 

  60. Nag, A. et al. Toward continuous social phenotyping: analyzing gaze patterns in an emotion recognition task for children with autism through wearable smart glasses. J. Med Internet Res 22, e13810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cilia, F. et al. Computer-aided screening of autism spectrum disorder: eye-tracking study using data visualization and deep learning. JMIR Hum. Factors 8, e27706 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhao, Z. et al. Classification of children with autism and typical development using eye-tracking data from face-to-face conversations: machine learning model development and performance evaluation. J. Med Internet Res. 23, e29328 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ko, C., Lim, J. H., Hong, J., Hong, S. B. & Park, Y. R. Development and validation of a joint attention-based deep learning system for detection and symptom severity assessment of autism spectrum disorder. JAMA Netw. Open 6, e2315174 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu, L. et al. The impact of cues on joint attention in children with autism spectrum disorder: an eye-tracking study in virtual games. Behav. Sci.14 (2024).

  65. Mahmood, M. A., Jamel, L., Alturki, N. & Tawfeek, M. A. Leveraging artificial intelligence for diagnosis of children autism through facial expressions. Sci. Rep. 15, 11945 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kalantarian, H. et al. The performance of emotion classifiers for children with parent-reported autism: quantitative feasibility study. JMIR Ment. Health 7, e13174 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Elsabbagh, M. et al. The development of face orienting mechanisms in infants at-risk for autism. Behav. Brain Res. 251, 147–154 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Klin, A., Shultz, S. & Jones, W. Social visual engagement in infants and toddlers with autism: early developmental transitions and a model of pathogenesis. Neurosci. Biobehav Rev. 50, 189–203 (2015).

    Article  PubMed  Google Scholar 

  69. Jones, W. & Klin, A. Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature 504, 427–431 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boucher, J. & Lewis, V. Unfamiliar face recognition in relatively able autistic children. J. Child Psychol. Psychiatry 33, 843–859 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Rutherford, M. D., Clements, K. A. & Sekuler, A. B. Differences in discrimination of eye and mouth displacement in autism spectrum disorders. Vis. Res. 47, 2099–2110 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, Y. et al. Autistic spectrum traits detection and early screening: a machine learning based eye movement study. J. Child Adolesc. Psychiatr. Nurs. 35, 83–92 (2022).

    Article  PubMed  Google Scholar 

  73. So, W. C. et al. Seeing through a robot’s eyes: a cross-sectional exploratory study in developing a robotic screening technology for autism. Autism Res. 17, 366–380 (2024).

    Article  PubMed  Google Scholar 

  74. Colonnese, F., Di Luzio, F., Rosato, A. & Panella, M. Enhancing autism detection through gaze analysis using eye tracking sensors and data attribution with distillation in deep neural networks. Sensors 24 (2024).

  75. Kang, J. Y. et al. Automated tracking and quantification of autistic behavioral symptoms using microsoft kinect. Stud. Health Technol. Inf. 220, 167–170 (2016).

    Google Scholar 

  76. Yang, Y. et al. Automatically predicting perceived conversation quality in a pediatric sample enriched for autism. Interspeech 2023, 4603–4607 (2023).

    PubMed  PubMed Central  Google Scholar 

  77. Vabalas, A., Gowen, E., Poliakoff, E. & Casson, A. J. Applying machine learning to kinematic and eye movement features of a movement imitation task to predict autism diagnosis. Sci. Rep. 10, 8346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Koehler, J. C. et al. Machine learning classification of autism spectrum disorder based on reciprocity in naturalistic social interactions. Transl. Psychiatry 14, 76 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao, Z. et al. Identifying autism with head movement features by implementing machine learning algorithms. J. Autism Dev. Disord. 52, 3038–3049 (2022).

    Article  PubMed  Google Scholar 

  80. Jequier Gygax, M., Maillard, A. M. & Favre, J. Could gait biomechanics become a marker of atypical neuronal circuitry in human development? The example of autism spectrum disorder. Front. Bioeng. Biotechnol. 9, 624522 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kindregan, D., Gallagher, L. & Gormley, J. Gait deviations in children with autism spectrum disorders: a review. Autism Res Treat. 2015, 741480 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Ganai, U. J., Ratne, A., Bhushan, B. & Venkatesh, K. S. Early detection of autism spectrum disorder: gait deviations and machine learning. Sci. Rep. 15, 873 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fusaroli, R., Lambrechts, A., Bang, D., Bowler, D. M. & Gaigg, S. B. Is voice a marker for autism spectrum disorder? a systematic review and meta-analysis. Autism Res. 10, 384–407 (2017).

    Article  PubMed  Google Scholar 

  84. Trayvick, J. et al. Speech and language patterns in autism: towards natural language processing as a research and clinical tool. Psychiatry Res. 340, 116109 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Glatt, S. J. et al. Blood-based gene expression signatures of infants and toddlers with autism. J. Am. Acad. Child Adolesc. Psychiatry 51, 934–944.e932 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cortese, S. et al. Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: a systematic review. World Psychiatry 22, 129–149 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tylee, D. S. et al. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: a combined-samples mega-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 174, 181–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Bahado-Singh, R. O., Vishweswaraiah, S., Aydas, B. & Radhakrishna, U. Artificial intelligence and placental DNA methylation: newborn prediction and molecular mechanisms of autism in preterm children. J. Matern. Fetal Neonatal Med. 35, 8150–8159 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Bahado-Singh, R. O., Vishweswaraiah, S., Aydas, B. & Radhakrishna, U. Placental DNA methylation changes and the early prediction of autism in full-term newborns. PLoS One 16, e0253340 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bahado-Singh, R. O. et al. Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Res. 1724, 146457 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Anwar, A. et al. Advanced glycation endproducts, dityrosine and arginine transporter dysfunction in autism—a source of biomarkers for clinical diagnosis. Mol. Autism 9, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Al-Saei, A. N. J. M. et al. Validation of plasma protein glycation and oxidation biomarkers for the diagnosis of autism. Mol. Psychiatry 29, 653–659 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Liu, X. et al. Untargeted urine metabolomics and machine learning provide potential metabolic signatures in children with autism spectrum disorder. Front. Psychiatry 15, 1261617 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yang, S., Jin, D., Liu, J. & He, Y. Identification of young high-functioning autism individuals based on functional connectome using graph isomorphism network: a pilot study. Brain Sci. 12 (2022).

  95. Liu, J. et al. Metabolomic analysis of plasma biomarkers in children with autism spectrum disorders. MedComm 5, e488 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kurochkin, I. et al. Metabolome signature of autism in the human prefrontal cortex. Commun. Biol. 2, 234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Xie, K. et al. Biomarkers and pathways in autism spectrum disorder: an individual meta-analysis based on proteomic and metabolomic data. Eur. Arch. Psychiatry Clin. Neurosci. (2024).

  98. Bašić-Čičak, D., Hasić Telalović, J. & Pašić, L. Utilizing artificial intelligence for microbiome decision-making: autism spectrum disorder in children from Bosnia and Herzegovina. Diagnostics14 (2024).

  99. Climent-Pérez, P., Martínez-González, A. E. & Andreo-Martínez, P. Contributions of artificial intelligence to analysis of gut microbiota in autism spectrum disorder: a systematic review. Children 11 (2024).

  100. Novielli, P. et al. Personalized identification of autism-related bacteria in the gut microbiome using explainable artificial intelligence. iScience 27, 110709 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Joudar, S. S., Albahri, A. S. & Hamid, R. A. Triage and priority-based healthcare diagnosis using artificial intelligence for autism spectrum disorder and gene contribution: a systematic review. Comput Biol. Med. 146, 105553 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Reddy, K., Taksande, A. & Kurian, B. Harnessing the power of mobile phone technology: screening and identifying autism spectrum disorder with smartphone apps. Cureus 16, e55004 (2024).

    PubMed  PubMed Central  Google Scholar 

  103. Grazioli, S. et al. Exploring telediagnostic procedures in child neuropsychiatry: addressing adhd diagnosis and autism symptoms through supervised machine learning. Eur. Child Adolesc. Psychiatry 33, 139–149 (2024).

    Article  PubMed  Google Scholar 

  104. Atkins, D. et al. Grading quality of evidence and strength of recommendations. BMJ 328, 1490 (2004).

    Article  PubMed  Google Scholar 

  105. Washington, P. et al. Data-driven diagnostics and the potential of mobile artificial intelligence for digital therapeutic phenotyping in computational psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 759–769 (2020).

    PubMed  Google Scholar 

  106. Megerian, J. T. et al. Evaluation of an artificial intelligence-based medical device for diagnosis of autism spectrum disorder. NPJ Digit Med. 5, 57 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jones, W. et al. Eye-tracking–based measurement of social visual engagement compared with expert clinical diagnosis of autism. JAMA 330, 854–865 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Boudellioua, I., Kulmanov, M., Schofield, P. N., Gkoutos, G. V. & Hoehndorf, R. Deeppvp: phenotype-based prioritization of causative variants using deep learning. BMC Bioinforma. 20, 65 (2019).

    Article  Google Scholar 

  109. Quang, D., Chen, Y. & Xie, X. Dann: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31, 761–763 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Oberman, L. M. & Kaufmann, W. E. Autism spectrum disorder versus autism spectrum disorders: terminology, concepts, and clinical practice. Front Psychiatry 11, 484 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sztainberg, Y. & Zoghbi, H. Y. Lessons learned from studying syndromic autism spectrum disorders. Nat. Neurosci. 19, 1408–1417 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Large-Scale Discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).

  113. Nahas, L. D. et al. Genomic insights and advanced machine learning: characterizing autism spectrum disorder biomarkers and genetic interactions. Metab. Brain Dis. 39, 29–42 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Gilman, S. R. et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hormozdiari, F., Penn, O., Borenstein, E. & Eichler, E. E. The discovery of integrated gene networks for autism and related disorders. Genome Res. 25, 142–154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, X. & Takumi, T. Genomic and genetic aspects of autism spectrum disorder. Biochem. Biophys. Res. Commun. 452, 244–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. O’Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 29, 1681–1691 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fröhlich, H. et al. From Hype to Reality: Data Science Enabling Personalized Medicine. BMC Med. 16, 150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hassan, M. et al. Innovations in genomics and big data analytics for personalized medicine and health care: a review. Int. J. Mol. Sci. 23 (2022).

  122. Amjad, E., Asnaashari, S., Sokouti, B. & Dastmalchi, S. Systems biology comprehensive analysis on breast cancer for identification of key gene modules and genes associated with tnm-based clinical stages. Sci. Rep. 10, 10816 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cardoso, F. et al. 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med 375, 717–729 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Kuwano, Y. et al. Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children. PLoS One 6, e24723 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, M. et al. Assessment of glymphatic function and white matter integrity in children with autism using multi-parametric MRI and machine learning. Eur. Radio. 35, 1623–1636 (2025).

    Article  Google Scholar 

  126. Liu, M., Li, B. & Hu, D. Autism spectrum disorder studies using FMRI data and machine learning: a review. Front Neurosci. 15, 697870 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Khodatars, M. et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Comput Biol. Med. 139, 104949 (2021).

    Article  PubMed  Google Scholar 

  128. Garcia, M. & Kelly, C. 3d CNN for neuropsychiatry: predicting autism with interpretable deep learning applied to minimally preprocessed structural MRI data. PLoS One 19, e0276832 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Valizadeh, A. et al. Automated diagnosis of autism with artificial intelligence: state of the art. Rev. Neurosci. 35, 141–163 (2024).

    Article  PubMed  Google Scholar 

  130. Wang, S., Sun, Z., Martinez-Tejada, L. A. & Yoshimura, N. Comparison of autism spectrum disorder subtypes based on functional and structural factors. Front Neurosci. 18, 1440222 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Schielen, S. J. C., Pilmeyer, J., Aldenkamp, A. P. & Zinger, S. The diagnosis of asd with MRI: a systematic review and meta-analysis. Transl. Psychiatry 14, 318 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Xu, M., Calhoun, V., Jiang, R., Yan, W. & Sui, J. Brain imaging-based machine learning in autism spectrum disorder: methods and applications. J. Neurosci. Methods 361, 109271 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang, F. Disentangling the heterogeneity of autism spectrum disorder using normative modeling. Biol. Psychiatry 91, 920–921 (2022).

    Article  PubMed  Google Scholar 

  134. Lombardo, M. V., Lai, M. C. & Baron-Cohen, S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol. Psychiatry 24, 1435–1450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ranaut, A., Khandnor, P. & Chand, T. Identification of autism spectrum disorder using electroencephalography and machine learning: a review. J. Neural Eng. 21 (2024).

  136. Das, S. et al. Machine learning approaches for electroencephalography and magnetoencephalography analyses in autism spectrum disorder: a systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry 123, 110705 (2023).

    Article  PubMed  Google Scholar 

  137. Alhassan, S., Soudani, A. & Almusallam, M. Energy-efficient EEG-based scheme for autism spectrum disorder detection using wearable sensors. Sensors 23 (2023).

  138. Abou-Abbas, L., van Noordt, S., Desjardins, J. A., Cichonski, M. & Elsabbagh, M. Use of empirical mode decomposition in ERP analysis to classify familial risk and diagnostic outcomes for autism spectrum disorder. Brain Sci. 11 (2021).

  139. Wang, X. et al. Early qualitative and quantitative amplitude-integrated electroencephalogram and raw electroencephalogram for predicting long-term neurodevelopmental outcomes in extremely preterm infants in the Netherlands: a 10-year cohort study. Lancet Digit Health 5, e895–e904 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Rogala, J. et al. Enhancing autism spectrum disorder classification in children through the integration of traditional statistics and classical machine learning techniques in EEG analysis. Sci. Rep. 13, 21748 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wiggins, L. D. et al. DSM-5 criteria for autism spectrum disorder maximizes diagnostic sensitivity and specificity in preschool children. Soc. Psychiatry Psychiatr. Epidemiol. 54, 693–701 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Beglinger, L. J. & Smith, T. H. A review of subtyping in autism and proposed dimensional classification model. J. Autism Dev. Disord. 31, 411–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Eaves, L. C., Ho, H. H. & Eaves, D. M. Subtypes of autism by cluster analysis. J. Autism Dev. Disord. 24, 3–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Sevin, J. A. et al. Empirically derived subtypes of pervasive developmental disorders: a cluster analytic study. J. Autism Dev. Disord. 25, 561–578 (1995).

    Article  CAS  PubMed  Google Scholar 

  145. Bitsika, V., Sharpley, C. F. & Orapeleng, S. An exploratory analysis of the use of cognitive, adaptive and behavioural indices for cluster analysis of ASD Subgroups. J. Intellect. Disabil. Res. 52, 973–985 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Syriopoulou-Delli, C. K. & Papaefstathiou, E. Review of cluster analysis of phenotypic data in autism spectrum disorders: distinct subtypes or a severity gradient model?. Int. J. Dev. Disabil. 66, 13–21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Stevens, E. et al. Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning. Int. J. Med. Inf. 129, 29–36 (2019).

    Article  Google Scholar 

  148. Prince, N. et al. Phenotypically driven subgroups of ASD display distinct metabolomic profiles. Brain Behav. Immun. 111, 21–29 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yuwattana, W. et al. Machine learning of clinical phenotypes facilitates autism screening and identifies novel subgroups with distinct transcriptomic profiles. Sci. Rep. 15, 11712 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Frye, R. E., Rose, S., Boles, R. G. & Rossignol, D. A. A Personalized approach to evaluating and treating autism spectrum disorder. J. Pers. Med. 12 (2022).

  151. McDougal, E., Riby, D. M. & Hanley, M. Teacher insights into the barriers and facilitators of learning in autism. Res. Autism Spectr. Disord. 79, 101674 (2020).

    Article  Google Scholar 

  152. Ferrari, E. in Artificial Intelligence in Medicine (Lidströmer, N. & Ashrafian, H. eds.) 1579–1593 (Springer International Publishing, 2022).

  153. Wang, S. et al. Artificial intelligence in education: a systematic literature review. Expert Syst. Appl. 252, 124167 (2024).

    Article  Google Scholar 

  154. Schmidt, M., Glaser, N., Palmer, H., Schmidt, C. & Xing, W. Through the lens of artificial intelligence: a novel study of spherical video-based virtual reality usage in autism and neurotypical participants. Comput. Educ. X Real. 3, 100041 (2023).

    Google Scholar 

  155. Kyrlitsias, C. & Michael-Grigoriou, D. Social interaction with agents and avatars in immersive virtual environments: a survey. Front. Virtual Reality 2, 2021 (2022).

  156. Cheng, Y. & Bololia, L. The effects of augmented reality on social skills in children with an autism diagnosis: a preliminary systematic review. J. Autism Dev. Disord. 54, 1317–1331 (2024).

    Article  PubMed  Google Scholar 

  157. Solomon, M. et al. Feedback-driven trial-by-trial learning in autism spectrum disorders. Am. J. Psychiatry 172, 173–181 (2015).

    Article  PubMed  Google Scholar 

  158. Valencia, K., Rusu, C., Quiñones, D. & Jamet, E. The impact of technology on people with autism spectrum disorder: a systematic literature review. Sensors (Basel) 19 (2019).

  159. Ahmed, M., Wadhahi, F., Rehman, H., Kalban, I. & Achuthan, G. 524-534 (2020).

  160. Standen, P. J. et al. An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities. Br. J. Educ. Technol. 51, 1748–1765 (2020).

    Article  Google Scholar 

  161. Sennott, S. C., Akagi, L., Lee, M. & Rhodes, A. AAC and artificial intelligence (AI). Top. Lang. Disord. 39, 389–403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Brignell, A. et al. Communication interventions for autism spectrum disorder in minimally verbal children. Cochrane Database Syst. Rev. 11, Cd012324 (2018).

    PubMed  Google Scholar 

  163. Uddin, M., Wang, Y. & Woodbury-Smith, M. Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ Digit Med 2, 112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Jacob, S. et al. Neurodevelopmental heterogeneity and computational approaches for understanding autism. Transl. Psychiatry 9, 63 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Diémé, B. et al. Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J. Proteome Res 14, 5273–5282 (2015).

    Article  PubMed  Google Scholar 

  166. West, P. R. et al. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLOS ONE 9, e112445 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Liang, Y. et al. Fully automated sample processing and analysis workflow for low-input proteome profiling. Anal. Chem. 93, 1658–1666 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Wan, L. et al. Multimodal investigation of dynamic brain network alterations in autism spectrum disorder: linking connectivity dynamics to symptoms and developmental trajectories. NeuroImage 302, 120895 (2024).

    Article  PubMed  Google Scholar 

  169. Gao, L. et al. Autism spectrum disorders detection based on multi-task transformer neural network. BMC Neurosci. 25, 27 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Abbas, H., Garberson, F., Liu-Mayo, S., Glover, E. & Wall, D. P. Multi-modular AI approach to streamline autism diagnosis in young children. Sci. Rep. 10, 5014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rajput, D., Wang, W.-J. & Chen, C.-C. Evaluation of a decided sample size in machine learning applications. BMC Bioinforma. 24, 48 (2023).

    Article  Google Scholar 

  172. Zunino, A. et al. Video gesture analysis for autism spectrum disorder detection. In Proc. 24th International Conference on Pattern Recognition (ICPR), 3421–3426 (IEEE, 2018).

  173. Haque, M. M. et al. Informing developmental milestone achievement for children with autism: machine learning approach. JMIR Med. Inf. 9, e29242 (2021).

    Article  Google Scholar 

  174. Matheny, M. E., Whicher, D. & Thadaney Israni, S. Artificial intelligence in health care: a report from the national academy of medicine. JAMA 323, 509–510 (2020).

    Article  PubMed  Google Scholar 

  175. Ying, X. An OVERVIEW OF OVERFITTING AND ITS SOlutions. J. Phys. Conf. Ser. 1168, 022022 (2019).

    Article  Google Scholar 

  176. Erden, Y. J., Hummerstone, H. & Rainey, S. Automating autism assessment: what AI can bring to the diagnostic process. J. Eval. Clin. Pract. 27, 485–490 (2021).

    Article  PubMed  Google Scholar 

  177. Ding, Y., Zhang, H. & Qiu, T. Deep learning approach to predict autism spectrum disorder: a systematic review and meta-analysis. BMC Psychiatry 24, 739 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Yang, J. et al. Mitigating machine learning bias between high income and low–middle income countries for enhanced model fairness and generalizability. Sci. Rep. 14, 13318 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kang, L., Chen, M., Huang, J. & Xu, J. Identifying autism spectrum disorder based on machine learning for multi-site FMRI. J. Neurosci. Methods 416, 110379 (2025).

    Article  PubMed  Google Scholar 

  180. Ciobanu-Caraus, O. et al. A critical moment in machine learning in medicine: on reproducible and interpretable learning. Acta Neurochir. 166, 14 (2024).

    Article  PubMed  Google Scholar 

  181. Beam, A. L., Manrai, A. K. & Ghassemi, M. Challenges to the reproducibility of machine learning models in health care. JAMA 323, 305–306 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Su, W.-C., Mutersbaugh, J., Huang, W.-L., Bhat, A. & Gandjbakhche, A. Using deep learning to classify developmental differences in reaching and placing movements in children with and without autism spectrum disorder. Sci. Rep. 14, 30283 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nelson, K. et al. Evaluating Model Drift in Machine Learning Algorithms (2015).

  185. Barberis, A., Aerts, H. J. W. L. & Buffa, F. M. Robustness and reproducibility for AI learning in biomedical sciences: renoir. Sci. Rep. 14, 1933 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hoffman J, et al. Overcoming barriers and enabling artificial intelligence adoption in allied health clinical practice: a qualitative study. Digit. Health. 11. https://doi.org/10.1177/20552076241311144 (2025).

  187. Ueda, D. et al. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J. Radiol. 42, 3–15 (2024).

    Article  PubMed  Google Scholar 

  188. Cabral, B. P. et al. Future use of AI in diagnostic medicine: 2-wave cross-sectional survey study. J. Med. Internet Res. 27, e53892 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Duda, M., Daniels, J. & Wall, D. P. Clinical evaluation of a novel and mobile autism risk assessment. J. Autism Dev. Disord. 46, 1953–61 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Pan, N. et al. Developing a simplified measure to predict the risk of autism spectrum disorders: Abbreviating the MCHAT-R using a machine learning approach in China. Psychiatry Res. 344, 116353 (2025).

  191. Thabtah, F., Kamalov, F. & Rajab, K. A new computational intelligence approach to detect autistic features for autism screening. Int. J. Med. Inf. 117, 112–24 (2018).

    Article  Google Scholar 

  192. Duda, M., Haber, N., Daniels, J. & Wall, D. P. Crowdsourced validation of a machine-learning classification system for autism and ADHD. Transl. Psychiatry 7, e1133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tariq, Q. et al. Mobile detection of autism through machine learning on home video: a development and prospective validation study. PLoS Med. 15, e1002705 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Tariq, Q., Daniels, J., Schwartz, J. N., Washington, P., Kalantarian, H., Wall, D. P. Mobile detection of autism through machine learning on home video: A development and prospective validation study. PLoS Med. 15, e1002705 (2018).

  195. Li, B., Sharma, A., Meng, J., Purushwalkam, S. & Gowen, E. Applying machine learning to identify autistic adults using imitation: an exploratory study. PLoS One 12, e0182652 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Liu, W., Li, M. & Yi, L. Identifying children with autism spectrum disorder based on their face processing abnormality: a machine learning framework. Autism Res. 9, 888–898 (2016).

    Article  PubMed  Google Scholar 

  197. Liu, J. et al. Metabolomic analysis of plasma biomarkers in children with autism spectrum disorders. MedComm. 5, e488 (2024).

  198. Ravindranath V, Ra S. A machine learning based approach to classify autism with optimum behaviour sets. Int. J. Eng. Technol. 7 (2018).

  199. Bone, D. et al. Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion. J. Child Psychol. Psychiatry 57, 927–937 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Bussu, G., Jones, E. J. H., Charman, T., Johnson, M. H. & Buitelaar, J. K. Prediction of autism at 3 years from behavioural and developmental measures in high-risk infants: a longitudinal cross-domain classifier analysis. J. Autism Dev. Disord. 48, 2418–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Duda, M., Ma, R., Haber, N. & Wall, D. P. Use of machine learning for behavioral distinction of autism and ADHD. Transl. Psychiatry 6, e732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Review initially proposed and drafted by A.R., N.W. and C.P., D.O.R. K.G., S.O. and M.S. reviewed and revised critically for intellectually important content. All authors reviewed the draft prior to submission.

Corresponding author

Correspondence to Aoife Reilly.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reilly, A., Walsh, N., O’Reilly, D. et al. The role of machine learning in autism spectrum disorder assessment and management. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04566-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-025-04566-0

Search

Quick links