Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Effects of Lacticaseibacillus rhamnosus MP108 on functional constipation symptoms and gut microbiota in children

Abstract

Background

We aimed to evaluate the effects of a probiotic preparation containing Lacticaseibacillus rhamnosus MP108 on the improvement of clinical symptoms and gut microbiota in children with Functional Constipation (FC).

Methods

This 4-week randomized, double-blind, placebo-controlled trial assigned 6 to 36-month-old children with FC to supplementation with Lacticaseibacillus rhamnosus MP108 (intervention group, n = 77) or maltodextrin supplementation (control group, n = 77). An electronic questionnaire was used to obtain the defecation status, and 16S rRNA sequencing technology was used to extract the characteristics of gut microbiota. The primary outcomes were treatment success rate (defined as average of ≥3 spontaneous stools movements per week), weekly defecation frequency, and stool hardness. The secondary outcomes included constipation-related symptoms and changes in the gut microbiota. The analysis was performed on an intention-to-treat basis.

Results

After the intervention, the treatment success rate in the intervention group was significantly higher than that in the control group (83.1% vs. 63.6%, P = 0.006). The intervention group demonstrated significantly higher weekly defecation frequency (4.99 ± 2.88 vs. 3.71 ± 2.86, P = 0.002) and Bristol Stool Form Scale (BSFS) scores (3.75 ± 1.04 vs. 2.99 ± 1.17, P = 0.002) compared to the control group. There were significant differences in the gut microbiota, and the intervention group had a higher diversity of gut microbiota Alpha (P = 0.047) and a higher relative abundance of Lacticaseibacillus, Bifidobacteriaceae, Parabacteroides_B_862066; while Erysipelatoclostridium and Eggerthella had lower relative abundance.

Conclusion

Lacticaseibacillus rhamnosus MP108 can effectively improve some constipation symptoms and gut microbiota structure in children with FC.

Impact

  • This is the first study to evaluate the effects of Lacticaseibacillus rhamnosus MP108 on Functional Constipation (FC) in children under 3 years old.

  • The study shows that probiotics containing Lacticaseibacillus rhamnosus MP108 can improve some clinical symptoms and gut microbiota structure in children with FC.

  • The positive results of Lacticaseibacillus rhamnosus MP108 intervention provide new insights for the treatment of FC in children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Comparison of constipation symptoms between the two groups after intervention.
Fig. 3: Comparison of weekly defecation frequency and stool consistency between the two groups after the intervention.
Fig. 4: Comparison of the Shannon index and β-diversity between the two groups before and after the intervention.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request to the corresponding author, Q.L. The 16S rRNA sequencing data have been deposited in the NCBI Sequence Read Archive (SRA) database under the accession number PRJNA1331488.

References

  1. Drossman, D. A. & Hasler, W. L. Rome IV-functional GI disorders: disorders of gut-brain interaction. Gastroenterology 150, 1257–1261 (2016).

    Article  PubMed  Google Scholar 

  2. Kilgore, A. & Khlevner, J. Functional constipation: pathophysiology, evaluation, and management. Aliment Pharm. Ther. 60, S20–s29 (2024).

    Article  Google Scholar 

  3. Vriesman, M. H., Koppen, I. J. N., Camilleri, M., Di Lorenzo, C. & Benninga, M. A. Management of functional constipation in children and adults. Nat. Rev. Gastroenterol. Hepatol. 17, 21–39 (2020).

    Article  PubMed  Google Scholar 

  4. Levy, E. I., Lemmens, R., Vandenplas, Y. & Devreker, T. Functional constipation in children: challenges and solutions. Pediatr. Health Med Ther. 8, 19–27 (2017).

    Article  Google Scholar 

  5. Tran, D. L. & Sintusek, P. Functional constipation in children: what physicians should know. World J. Gastroenterol. 29, 1261–1288 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ji, W. J. et al. Epidemiologic survey on the prevalence and distribution of infants’ common gastrointestinal symptoms in 7 cities in china: a population-based study. Zhonghua Liu Xing Bing. Xue Za Zhi 39, 1179–1183 (2018).

    PubMed  CAS  Google Scholar 

  7. Oostenbrink, R., Jongman, H., Landgraf, J. M., Raat, H. & Moll, H. A. Functional abdominal complaints in pre-school children: parental reports of health-related quality of life. Qual. Life Res. 19, 363–369 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Vriesman, M. H. et al. Quality of life in children with functional constipation: a systematic review and meta-analysis. J. Pediatrics 214, 141–150 (2019).

    Article  Google Scholar 

  9. Benninga, M. A. et al. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology S0016-5085(16)00182-7 (2016).

  10. Bongers, M. E., Benninga, M. A., Maurice-Stam, H. & Grootenhuis, M. A. Health-related quality of life in young adults with symptoms of constipation continuing from childhood into adulthood. Health Qual. Life Outcomes 7, 20 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou, J., Yuan, X. & Liu, Y. The gut microbiota-constipation connection: insights from a two sample bidirectional Mendelian randomization study. Micro Pathog. 192, 106667 (2024).

    Article  CAS  Google Scholar 

  12. Mares, C. R., Săsăran, M. O. & Mărginean, C. O. The relationship between small intestinal bacterial overgrowth and constipation in children—a comprehensive review. Front Cell Infect. Microbiol 14, 1431660 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang, J. et al. Characteristics of the gut microbiome and serum metabolome in patients with functional constipation. Nutrients 15 (2023).

  14. Li, Y. Q. et al. The gut microbiome and metabolites are altered and interrelated in patients with functional constipation. Front. Microbiol. 14, 1320567 (2023).

  15. Villanueva-Millan, M. J. et al. Methanogens and hydrogen sulfide producing bacteria guide distinct gut microbe profiles and irritable bowel syndrome subtypes. Am. J. Gastroenterol. 117, 2055–2066 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wieërs, G. et al. How probiotics affect the microbiota. Front. Cell Infect. Microbiol. 9, 454 (2019).

    Article  PubMed  Google Scholar 

  17. Deplancke, B. & Gaskins, H. R. Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. Faseb J. 17, 1310–1312 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. Bhattarai, Y. et al. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-ht(3) receptor expression via acetate production. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G80–g87 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Floch, M. H. Bile salts, intestinal microflora and enterohepatic circulation. Dig. Liver Dis. 34, S54–S57 (2002).

    Article  PubMed  Google Scholar 

  20. O’Sullivan, J. B., Ryan, K. M., Curtin, N. M., Harkin, A. & Connor, T. J. Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: implications for depression and neurodegeneration. Int. J. Neuropsychopharmacol. 12, 687–699 (2009).

    Article  PubMed  Google Scholar 

  21. Doron, S., Snydman, D. R. & Gorbach, S. L. Lactobacillus Gg: bacteriology and clinical applications. Gastroenterol. Clin. North Am. 34, 483–498 (2005). ix.

    Article  PubMed  Google Scholar 

  22. Succi, M. et al. Bile salt and acid tolerance of lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244, 129–137 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. Wang, G. et al. Lactobacillus rhamnosus strains relieve loperamide-induced constipation via different pathways independent of short-chain fatty acids. Front. Cell Infect. Microbiol. 10, 423 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, L. L. et al. Lactobacillus Rhamnosus Gg alleviates radiation-induced intestinal injury by modulating intestinal immunity and remodeling gut microbiota. Microbiol Res. 286, 127821 (2024).

    Article  PubMed  CAS  Google Scholar 

  25. Sepp, E., Mikelsaar, M. & Salminen, S. Effect of administration of Lactobacillus casei strain gg on the gastrointestinal microbiota of newborns. Microb. Ecol. Health Dis. 6, 309–314 (1993).

    Google Scholar 

  26. Duan, C. et al. Lactobacillus Rhamnosus attenuates intestinal inflammation induced by Fusobacterium nucleatum infection by restoring the autophagic flux. Int. J. Mol. Med. 47, 125–136 (2021).

    Article  PubMed  Google Scholar 

  27. Lo Vecchio, A., Nunziata, F., Bruzzese, D., Conelli, M. L. & Guarino, A. Rotavirus immunisation status affects the efficacy of Lacticaseibacillus Rhamnosus Gg for the treatment of children with acute diarrhoea: a meta-analysis. Benef. Microbes 13, 283–294 (2022).

    Article  PubMed  CAS  Google Scholar 

  28. Luoto, R., Pärtty, A., Vogt, J. K., Rautava, S. & Isolauri, E. Reversible aberrancies in gut microbiome of moderate and late preterm infants: results from a randomized, controlled trial. Gut Microbes 15, 2283913 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, B., Lynch, B., Zhao, J., Guo, Y. & Mak, A. Lactobacillus Rhamnosus Mp108: toxicological evaluation. J. Food Sci. 86, 228–241 (2021).

    Article  PubMed  CAS  Google Scholar 

  30. Yan, H. D. et al. Study on the synergistic regulation of immune function in rats by oligosaccharides and Lactobacillus Rhamnosus Mp108. Food Ferment. Industries, 1-11.

  31. Zhao, Y. M., Hou, Y. M. & Zhao, Y. Q. Study of Lacticaseibacillus Rhamnosus Mp108 on alleviating bacterial diarrhea. Sci. Technol. Food Ind. 43, 20–27 (2022).

    Google Scholar 

  32. Zhang, C. et al. Meta-analysis of randomized controlled trials of the effects of probiotics on functional constipation in adults. Clin. Nutr. 39, 2960–2969 (2020).

    Article  PubMed  Google Scholar 

  33. Wegh, C. A. M., Benninga, M. A. & Tabbers, M. M. Effectiveness of probiotics in children with functional abdominal pain disorders and functional constipation: a systematic review. J. Clin. Gastroenterol. 52, S10-s26 (2018).

  34. Wojtyniak, K., Horvath, A., Dziechciarz, P. & Szajewska, H. Lactobacillus Casei Rhamnosus Lcr35 in the management of functional constipation in children: a randomized trial. J. Pediatr. 184, 101–105.e101 (2017).

    Article  PubMed  Google Scholar 

  35. Quigley, E. M., Vandeplassche, L., Kerstens, R. & Ausma, J. Clinical trial: the efficacy, impact on quality of life, and safety and tolerability of prucalopride in severe chronic constipation-a 12-week, randomized, double-blind, placebo-controlled study. Aliment Pharm. Ther. 29, 315–328 (2009).

    Article  CAS  Google Scholar 

  36. Chumpitazi, B. P. et al. Bristol stool form scale reliability and agreement decreases when determining Rome III stool form designations. Neurogastroenterol. Motil. 28, 443–448 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. Malhotra, A. et al. Use of Bristol Stool Form Scale to predict the adequacy of bowel preparation—a prospective study. Colorectal Dis. 18, 200–204 (2016).

    Article  PubMed  CAS  Google Scholar 

  38. Blake, M. R., Raker, J. M. & Whelan, K. Validity and reliability of the Bristol Stool Form Scale in healthy adults and patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharm. Ther. 44, 693–703 (2016).

    Article  CAS  Google Scholar 

  39. Gao, Y., Zhang, G., Jiang, S. & Liu, Y. X. Wekemo bioincloud: a user-friendly platform for meta-omics data analyses. Imeta 3, e175 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wallace, C. et al. Probiotics for treatment of chronic constipation in children. Cochrane Database Syst. Rev. 3, Cd014257 (2022).

    PubMed  Google Scholar 

  41. Callahan, B. J. et al. Dada2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. DeSantis, T. Z. et al. Greengenes, a Chimera-checked 16s rRNA gene database and workbench compatible with Arb. Appl Environ. Microbiol 72, 5069–5072 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Marungruang, N., Tovar, J., Björck, I. & Hållenius, F. F. Improvement in cardiometabolic risk markers following a multifunctional diet is associated with gut microbial taxa in healthy overweight and obese subjects. Eur. J. Nutr. 57, 2927–2936 (2018).

    Article  PubMed  Google Scholar 

  44. Gu, Y. et al. Lactobacillus Rhamnosus Gg supernatant promotes intestinal mucin production through regulating 5-HT4R and gut microbiota. Food Funct. 13, 12144–12155 (2022).

    Article  PubMed  CAS  Google Scholar 

  45. Li, H. et al. Lactobacillus Rhamnosus Mp108 alleviates ulcerative colitis in mice by enhancing the intestinal barrier, inhibiting inflammation, and modulating gut microbiota. Food Science Human Wellness (2024).

  46. Bu, L. N., Chang, M. H., Ni, Y. H., Chen, H. L. & Cheng, C. C. Lactobacillus Casei Rhamnosus Lcr35 in children with chronic constipation. Pediatr. Int. 49, 485–490 (2007).

    Article  PubMed  Google Scholar 

  47. Basturk, A., Isik, İ, Atalay, A. & Yılmaz, A. Investigation of the efficacy of Lactobacillus Rhamnosus Gg in infants with cow’s milk protein allergy: a randomised double-blind placebo-controlled trial. Probiotics Antimicrob. Proteins 12, 138–143 (2020).

    Article  PubMed  CAS  Google Scholar 

  48. Banaszkiewicz, A. & Szajewska, H. Ineffectiveness of Lactobacillus Gg as an adjunct to lactulose for the treatment of constipation in children: a double-blind, placebo-controlled randomized trial. J. Pediatr. 146, 364–369 (2005).

    Article  PubMed  Google Scholar 

  49. Coccorullo, P. et al. Lactobacillus Reuteri (Dsm 17938) in infants with functional chronic constipation: a double-blind, randomized, placebo-controlled study. J. Pediatr. 157, 598–602 (2010).

    Article  PubMed  Google Scholar 

  50. Jung, C. et al. Effect of L. Reuteri on bowel movements in children aged 6 months to 4 years: a double-blind randomized controlled trial. Front Pediatr. 10, 997104 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sadeghzadeh, M., Rabieefar, A., Khoshnevisasl, P., Mousavinasab, N. & Eftekhari, K. The effect of probiotics on childhood constipation: a randomized controlled double blind clinical trial. Int. J. Pediatr. 2014, 937212 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Huang, L., Zhu, Q., Qu, X. & Qin, H. Microbial treatment in chronic constipation. Sci. China Life Sci. 61, 744–752 (2018).

    Article  PubMed  Google Scholar 

  53. Zeng, X. L., Yang, X. D., Yang, T., Huang, X. L. & Liu, S. Etiology and clinical classification of constipation. Zhonghua Wei Chang Wai Ke Za Zhi 25, 1120–1125 (2022).

    PubMed  CAS  Google Scholar 

  54. [Chinese Expert Consensus on the Diagnosis and Treatment of Outlet Obstructive Constipation (2022 Edition)]. Zhonghua Wei Chang Wai Ke Za Zhi 25, 1045-1057 (2022).

  55. Wang, Y. B. et al. The evaluation of Gi-Pill gastrointestinal electronic capsule for colonic transit test in patients with slow transit constipation. Int J. Colorectal Dis. 35, 29–34 (2020).

    Article  PubMed  Google Scholar 

  56. Xie, S. K. et al. Changes of intestinal flora and effects of corresponding intervention in colon slow transit constipation rats. Guangdong Med. J. 37, 325–327 (2016).

    Google Scholar 

  57. Kumar, A. et al. Probiotics as modulators of gut-brain axis for cognitive development. Front Pharm. 15, 1348297 (2024).

    Article  CAS  Google Scholar 

  58. Šola, K. F. et al. The effect of multistrain probiotics on functional constipation in the elderly: a randomized controlled trial. Eur. J. Clin. Nutr. 76, 1675–1681 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cheng, J. et al. Eight-week supplementation with bifidobacterium lactis hn019 and functional constipation: a randomized clinical trial. JAMA Netw. Open 7, e2436888 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wallace, C., Gordon, M., Sinopoulou, V. & Akobeng, A. K. Probiotics for management of functional abdominal pain disorders in children. Cochrane Database Syst. Rev. 2, Cd012849 (2023).

    PubMed  Google Scholar 

  61. Ki Cha, B. et al. The effect of a multispecies probiotic mixture on the symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J. Clin. Gastroenterol. 46, 220–227 (2012).

    Article  PubMed  Google Scholar 

  62. Kwon, H. et al. Effect of Lacticaseibacillus Rhamnosus Idcc 3201 on irritable bowel syndrome with constipation: a randomized, double-blind, and placebo-controlled trial. Sci. Rep. 14, 22384 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Chantanawilas, P., Pahumunto, N., Thananimit, S. & Teanpaisan, R. Anticandidal activity of various probiotic Lactobacillus strains and their efficacy enhanced by prebiotic supplementation. Curr. Microbiol 81, 271 (2024).

    Article  PubMed  CAS  Google Scholar 

  64. Peng, Y. et al. Lactobacillus Reuteri in digestive system diseases: focus on clinical trials and mechanisms. Front Cell Infect. Microbiol. 13, 1254198 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Mathipa-Mdakane, M. G. & Thantsha, M. S. Lacticaseibacillus Rhamnosus: a suitable candidate for the construction of novel bioengineered probiotic strains for targeted pathogen control. Foods 11 (2022).

  66. Qin, W. et al. Integrative Atac-Seq and RNA-Seq analyses of Ipec-J2 Cells reveals porcine transcription and chromatin accessibility changes associated with Escherichia Coli F18ac inhibited by Lactobacillus Reuteri. Front Microbiol 14, 1101111 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chantanawilas, P., Pahumunto, N. & Teanpaisan, R. Aggregation and adhesion ability of various probiotic strains and Candida species: an in vitro study. J. Dent. Sci. 19, 2163–2171 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Park, M. A. et al. Anti-inflammatory potential via the MAPK signaling pathway of Lactobacillus spp. isolated from canine feces. PLoS One 19, e0299792 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Jeong, M. et al. Heat-killed Lactobacillus Brevis enhances phagocytic activity and generates immune-stimulatory effects through activating the Tak1 pathway. J. Microbiol. Biotechnol. 30, 1395–1403 (2020).

    Article  PubMed  CAS  Google Scholar 

  70. Asare, P. T. et al. Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat Campylobacter Spp. isolates. Microorganisms 8 (2020).

  71. Thierry, A. et al. New insights into physiology and metabolism of Propionibacterium Freudenreichii. Int. J. Food Microbiol. 149, 19–27 (2011).

    Article  PubMed  CAS  Google Scholar 

  72. Arvans, D. L. et al. Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G696–G704 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    Article  PubMed  CAS  Google Scholar 

  74. Ezeji, J. C. et al. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 13, 1922241 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cui, Y. et al. Roles of intestinal parabacteroides in human health and diseases. FEMS Microbiol. Lett. 369, fnac072 (2022).

  76. Cai, S. et al. Gut bacteria Erysipelatoclostridium and its related metabolite ptilosteroid a could predict radiation-induced intestinal injury. Front. Public Health 10, 862598 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhu, X. et al. A high-fat diet increases the characteristics of gut microbial composition and the intestinal damage associated with non-alcoholic fatty liver disease. Int. J. Mol. Sci. 24, 16733 (2023).

  78. Zorkina, Y. A. et al. [Effects of diet on the gut microbiome in patients with depression]. Zh. Nevrol. Psikhiatr Im. S S Korsakova 122, 59–64 (2022).

    Article  PubMed  Google Scholar 

  79. Zhang, W., Xu, X., Cai, L. & Cai, X. Dysbiosis of the gut microbiome in elderly patients with hepatocellular carcinoma. Sci. Rep. 13, 7797 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Alexander, M. et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 30, 17–30.e19 (2022).

    Article  PubMed  CAS  Google Scholar 

  81. Milani, C. et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81, e00036-17 (2017).

Download references

Acknowledgements

We would like to thank all the researchers involved in the investigation for their help, as well as the leaders and colleagues of the Maternal and Child Health Hospital and the Children’s Hospital for their strong support, as well as the participation of the study subjects. This research was funded by the Natural Science Foundation of Hunan Province (grant number: 2025JJ50562).

Author information

Authors and Affiliations

Authors

Contributions

Significant contributions to concept and design, data analysis and interpretation: X.P., Y.P., M.W.; Important contributions to data acquisition: X.P., Y.P., H.Z., M.W., Q.X., X.S., W.L., Y.L., W.X.; Major contributions to probiotic research and development: Y.Z., W.L.; Drafting articles or critically revising important knowledge content: Q.L., H.Z., X.P., Y.P.; All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hongmei Zhao or Qian Lin.

Ethics declarations

Consent statement

After being fully informed about the study, primary care givers consent to their children’s participation. Before the study began, each participant’s parents provided written informed consent. The study was approved by the Ethics Committee of Xiangya School of Public Health of Central South University, the Ethics Committee of Changsha Maternal and Child Health Hospital and the Ethics Committee of Hunan Children’s Hospital.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Pan, Y., Wu, M. et al. Effects of Lacticaseibacillus rhamnosus MP108 on functional constipation symptoms and gut microbiota in children. Pediatr Res (2026). https://doi.org/10.1038/s41390-025-04567-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-025-04567-z

Search

Quick links