Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Estimated fetal weight or gestational age: which is crucial for fetal cardiac evaluation?

Abstract

Background

Fetal cardiac output is typically assessed using gestational age (GA) or estimated fetal weight (EFW), but the optimal reference remains unclear due to limited validation.

Methods

We retrospectively analyzed prospectively collected data from singleton fetuses at 27 + 2 to 29 + 6 weeks of gestation. Subjects included those with small for gestational age (SGA; EFW <10th percentile), large for gestational age (LGA; EFW > 90th percentile), and appropriate for gestational age (AGA), all without structural abnormalities. Associations between fetal cardiac output and both GA and EFW were evaluated using generalized additive models.

Results

Among 443 fetuses with EFWs ranging from 873 to 1631 g, GA showed no significant association with any cardiac parameter (p ≥ 0.282). In contrast, EFW demonstrated significant and largely linear associations with all parameters (p < 0.001, F ≥ 16.7), consistent across GA and EFW ranges. Cardiac parameter distributions by EFW were similar across AGA, SGA, and LGA groups.

Conclusion

EFW showed stronger and more consistent correlations with fetal cardiac parameters than GA, supporting its use as a more reliable reference for fetal cardiac evaluation across different growth statuses.

Impact

  • Fetal cardiac output is typically assessed using reference ranges based on either gestational age (GA) or estimated fetal weight (EFW), both derived from appropriate for gestational age (AGA) fetuses.

  • We showed that EFW is superior to GA for fetal cardiac evaluation.

  • Including non-AGA fetuses confirmed they can be assessed similarly to AGA fetuses.

  • The new EFW-based reference ranges offer a uniform standard, enabling more definitive assessments across varied fetal growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart and the correlation between GA and EFW of participants.
Fig. 2: Three-dimensional surface plots elucidating the relationships between fetal cardiac parameters, GA, and EFW.
Fig. 3: Graphical display of reference ranges for each fetal cardiac parameter with a demonstration of 5th, 10th, 50th, 90th, and 95th centiles.

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Dewey, F. E., Rosenthal, D., Murphy, D. J., Froelicher, V. F. & Ashley, E. A. Does size matter?. Circulation 117, 2279–2287 (2008).

    Article  PubMed  Google Scholar 

  2. Eriksen-Volnes, T. et al. Normalized echocardiographic values from guideline-directed dedicated views for cardiac dimensions and left ventricular function. JACC Cardiovasc. Imaging 16, 1501–1515 (2023).

    Article  PubMed  Google Scholar 

  3. Strom, J. B. et al. Reference values for indexed echocardiographic chamber sizes in older adults: the multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. 13, e034029 (2024).

  4. Olivieri, L. J. et al. Normal right and left ventricular volumes prospectively obtained from cardiovascular magnetic resonance in awake, healthy, 0-12 year old children. J. Cardiovasc. Magn. Reson. 22, 11 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mielke, G. & Benda, N. Cardiac output and central distribution of blood flow in the human fetus. Circulation 103, 1662–1668 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Mao, Y. K. et al. Z-score reference ranges for pulsed-wave Doppler indices of the cardiac outflow tracts in normal fetuses. Int. J. Cardiovasc. Imaging 35, 811–825 (2019).

    Article  PubMed  Google Scholar 

  7. Rocha, L. A., Rolo, L. C., Nardozza, L. M. M., Tonni, G. & Araujo Junior, E. Z-score reference ranges for fetal heart functional measurements in a large Brazilian pregnant women sample. Pediatr. Cardiol. 40, 554–562 (2019).

    Article  PubMed  Google Scholar 

  8. Vigneswaran, T. V. et al. Reference ranges for the size of the fetal cardiac outflow tracts from 13 to 36 weeks gestation: a single-center study of over 7000 cases. Circ. Cardiovasc. Imaging 11, e007575 (2018).

    Article  PubMed  Google Scholar 

  9. Rudolph, A. M. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ. Res. 57, 811–821 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Rasanen, J., Wood, D. C., Weiner, S., Ludomirski, A. & Huhta, J. C. Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation 94, 1068–1073 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Kiserud, T., Ebbing, C., Kessler, J. & Rasmussen, S. Fetal cardiac output, distribution to the placenta and impact of placental compromise. Ultrasound Obstet. Gynecol. 28, 126–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Sutton, M. S., Groves, A., MacNeill, A., Sharland, G. & Allan, L. Assessment of changes in blood flow through the lungs and foramen ovale in the normal human fetus with gestational age: a prospective Doppler echocardiographic study. Br. Heart J. 71, 232–237 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sutton, M. G. S. J., Plappert, T. & Doubilet, P. Relationship between placental blood flow and combined ventricular output with gestational age in normal human fetus. Cardiovasc. Res. 25, 603–608 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Hadlock, F. P., Deter, R. L., Harrist, R. B. & Park, S. K. Estimating fetal age: computer-assisted analysis of multiple fetal growth parameters. Radiology 152, 497–501 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Itabashi, K., Miura, F., Uehara, R. & Nakamura, Y. New Japanese neonatal anthropometric charts for gestational age at birth. Pediatr. Int 56, 702–708 (2014).

    Article  PubMed  Google Scholar 

  16. Smrcek, J. M. et al. Detection rate of early fetal echocardiography and in utero development of congenital heart defects. J. Ultrasound Med. 25, 187–196 (2006).

    Article  PubMed  Google Scholar 

  17. Satomi, G. Guidelines for fetal echocardiography. Pediatr. Int. 57, 1–21 (2015).

    Article  PubMed  Google Scholar 

  18. Carvalho, J. et al. Isuog practice guidelines (updated): fetal cardiac screening. Ultrasound Obstet. Gynecol. 61, 788–803 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. van Nisselrooij, A. E. L. et al. Why are congenital heart defects being missed?. Ultrasound Obstet. Gynecol. 55, 747–757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sun, H. Y., Proudfoot, J. A. & McCandless, R. T. Prenatal detection of critical cardiac outflow tract anomalies remains suboptimal despite revised obstetrical imaging guidelines. Congenit. heart Dis. 13, 748–756 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lytzen, R. et al. Live-born major congenital heart disease in denmark: incidence, detection rate, and termination of pregnancy rate from 1996 to 2013. JAMA Cardiol. 3, 829–837 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kirk, J. S. et al. Sonographic screening to detect fetal cardiac anomalies: a 5-year experience with 111 abnormal cases. Obstet. Gynecol. 89, 227–232 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Moon-Grady, A. J. et al. Guidelines and recommendations for performance of the fetal echocardiogram: an update from the american society of echocardiography. J. Am. Soc. Echocardiogr. 36, 679–723 (2023).

    Article  PubMed  Google Scholar 

  24. Anandakumar, C. et al. Early asymmetric iugr and aneuploidy. J. Obstet. Gynaecol. Res. 22, 365–370 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Dall’Asta, A. et al. Etiology and perinatal outcome of periviable fetal growth restriction associated with structural or genetic anomaly. Ultrasound Obstet. Gynecol. 55, 368–374 (2020).

    Article  PubMed  Google Scholar 

  26. Langer, O. Fetal macrosomia: etiologic factors. Clin. Obstet. Gynecol. 43, 283–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Carvalho, J. S. et al. Isuog Practice Guidelines (Updated): Sonographic Screening Examination of the Fetal Heart. (2013).

  28. Luewan, S. et al. Z Score reference ranges of fetal cardiac output from 12 to 40 weeks of pregnancy. J. Ultrasound Med. 39, 515–527 (2020).

    Article  PubMed  Google Scholar 

  29. Hatle, L. Doppler Ultrasound in Cardiology. Physical Principles and Clinical Applications, 77–89 (1982).

  30. Arduini, D., Rizzo, G. & Romanini, C. Fetal cardiac output measurements in normal and pathologic states. 271–280 (Raven Press, 1995).

  31. Shinozuka, N. Ellipse tracing fetal growth assessment using abdominal circumference: JSUM standardization committee for fetal measurements. J. Med. Ultrasound 8, 87–94 (2000).

    Google Scholar 

  32. Lausman, A., Kingdom, J. & Maternal Fetal Medicine, C. Intrauterine growth restriction: screening, diagnosis, and management. J. Obstet. Gynaecol. Can. 35, 741–748 (2013).

    Article  PubMed  Google Scholar 

  33. Salomon, L. J. et al. Isuog practice guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 53, 715–723 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).

  35. Vuong, Q.-H. et al. Bayesian analysis for social data: a step-by-step protocol and interpretation. MethodsX 7, 100924 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brooks, S., Gelman, A., Jones, G. & Meng, X.-L. Handbook of Markov Chain Monte Carlo (CRC Press, 2011).

  37. Vats, D., Flegal, J. M. & Jones, G. L. Multivariate output analysis for Markov chain Monte Carlo. Biometrika 106, 321–337 (2019).

    Article  Google Scholar 

  38. McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2018).

  39. Lynch, S. M. Introduction to Applied Bayesian Statistics and Estimation for Social Scientists, 1 (Springer, 2007).

  40. Verburg, B. O. et al. Fetal hemodynamic adaptive changes related to intrauterine growth: the Generation R Study. Circulation 117, 649–659 (2008).

    Article  PubMed  Google Scholar 

  41. Itakura, A. et al. Guidelines for obstetrical practice in Japan: Japan Society of Obstetrics and Gynecology and Japan Association of Obstetricians and Gynecologists 2020 edition. J. Obstet. Gynaecol. Res. 49, 5–53 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

During the preparation of this study the authors used ChatGPT4 and DeepL for translational and academic editing.

Author information

Authors and Affiliations

Authors

Contributions

Sho Tano: conception and design of the study, analysis and interpretation of data, drafting the article. Tatsuwo Inamura, Mina Kato, and Manami Ito: conception and design of the study, acquisition of data review and editing. Takehiko Takeda: acquisition of data review and editing. Fumie Kinoshita: data analysis. Kazuya Fuma, Seiko Matsuo, Takafumi Ushida, and Kenji Imai: review and editing. Hiroaki Kajiyama and Tomomi Kotani: revising the article critically for important intellectual content. Yasuyuki Kishigami and Hidenori Oguchi: conception and design of the study, and revising the article critically for important intellectual content.

Corresponding author

Correspondence to Sho Tano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent statement

Informed consent was obtained from all the participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tano, S., Inamura, T., Kato, M. et al. Estimated fetal weight or gestational age: which is crucial for fetal cardiac evaluation?. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04584-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-025-04584-y

Search

Quick links