Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

White matter injury in neonatal rats is attenuated by GsMTx4 inhibiting oligodendrocyte precursor cell ferroptosis via the PIEZO1/GCLC signaling pathway

Abstract

Background and objectives

The mechanosensitive ion channel PIEZO1 has been recognized as a therapeutic target for a range of neurological disorders. Nevertheless, its involvement and underlying mechanisms in neonatal white matter injury (WMI) remain inadequately understood. This investigation was conducted to explore the role of PIEZO1 and its associated mechanisms in WMI using both rat and cellular models.

Methods

A rat model of WMI was developed through the lateral ventricular administration of lipopolysaccharide (LPS), while an in vitro WMI model was developed by preconditioning oligodendrocyte precursor cells (OPCs) with LPS. Following the administration of the PIEZO1 inhibitor GsMTx4 in both in vivo and in vitro WMI models, histopathological alterations in brain tissue were evaluated via hematoxylin and eosin staining. Western blotting was utilized to evaluate the protein levels of PIEZO1, inflammatory cytokines (IL-18 and TNF-α), and ferroptosis-associated markers (ACSL4, NOX1, SLC7A11, and GPX4). The expression of myelin basic protein and PIEZO1 was further examined through immunofluorescence analysis. Moreover, ultrastructural modifications in OPCs mitochondria were investigated using transmission electron microscopy. RNA sequencing to detect differences in ferroptosis gene expression in OPCs of different treatments; The Cell Counting Kit-8 (CCK-8) measures the optical density (OD) of OPCs to determine the IC50 of LPS, and the ROS kit measures the ROS level in OPCs; Wound healing assays for OPCs multiplication and mobility; The open-field experiment and the Morris water maze experiment evaluated the anxiety-like behavior, learning, and memory abilities of rats in each group.

Results

The administration of GsMTx4 was observed to mitigate pathological damage and inflammatory responses in WMI, alongside promoting OPCs proliferation. Additionally, OPCs ferroptosis was inhibited by GsMTx4, potentially due to the upregulation of the glutamate-cysteine ligase catalytic subunit.

Conclusions

This study highlights that GsMTx4 alleviates WMI pathological damage by suppressing OPCs ferroptosis, a process possibly mediated via the PIEZO1/GCLC signaling pathway.

Impact

  • GsMTx4 protects against neonatal white matter injury (WMI) by inhibiting oligodendrocyte precursor cell (OPC) ferroptosis and inflammation, mediated through the PIEZO1/GCLC signaling pathway.

  • This is the first study demonstrating that GsMTx4 alleviates WMI by targeting the PIEZO1/GCLC pathway to suppress OPC ferroptosis, revealing a novel mechanistic link in WMI pathogenesis.

  • This work identifies PIEZO1 inhibition as a promising therapeutic strategy for neonatal WMI and provides crucial mechanistic insights for developing targeted neuroprotective interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: White matter maturation impairment and developmental conditions in newborn rats following intraventricular LPS injection.
Fig. 2: Expression changes of PIEZO1 and ferroptosis-related proteins in newborn rat brain tissue.
Fig. 3: Changes in the expression of PIEZO1 and ferroptosis-related proteins in newborn rat brain tissue.
Fig. 4: OPCs extraction, identification, and in vitro WMI model establishment.
Fig. 5: Detection of OPCs cell mobility level and inflammatory factor expression.
Fig. 6: Expression levels of ferroptosis-related markers in OPCs cells in vitro.
Fig. 7: Immunofluorescence expression of OPCs cells in vitro.
Fig. 8: RNA sequencing and validation of OPCs cells in vitro.
Fig. 9: Long-term effects of GsMTx4 administration on anxiety-like behavior and learning/memory function in juvenile mice were assessed.
Fig. 10: Schematic of the PIEZO1/GCLC signaling pathway mechanism.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Cao, Y. et al. Assessment of neonatal intensive care unit practices, morbidity, and mortality among very preterm infants in China. JAMA Netw. Open 4, e2118904 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schneider, J. & Miller, S. P. Preterm brain Injury: white matter injury. Handb. Clin. Neurol. 162, 155–172 (2019).

    Article  PubMed  Google Scholar 

  3. Chi, S. et al. Astrocytic Piezo1-mediated mechanotransduction determines adult neurogenesis and cognitive functions. Neuron 110, 2984–2999.e8 (2022).

    Article  PubMed  CAS  Google Scholar 

  4. Liu, C. & Ju, R. Potential role of endoplasmic reticulum stress in modulating protein homeostasis in oligodendrocytes to improve white matter injury in preterm infants. Mol. Neurobiol. 61, 5295–5307 (2024).

    Article  PubMed  CAS  Google Scholar 

  5. Tang, L., Xie, D., Wang, S., Gao, C. & Pan, S. Piezo1 knockout improves post-stroke cognitive dysfunction by inhibiting the interleukin-6 (IL-6)/glutathione peroxidase 4 (GPX4) pathway. J. Inflamm. Res. 17, 2257–2270 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Koser, D. E. et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19, 1592–1598 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Malko, P., Jia, X., Wood, I. & Jiang, L. H. Piezo1 channel-mediated Ca2+ signaling inhibits lipopolysaccharide-induced activation of the NF-κB inflammatory signaling pathway and generation of TNF-α and IL-6 in microglial cells. Glia 71, 848–865 (2023).

    Article  PubMed  CAS  Google Scholar 

  8. Tang, H. et al. Piezo-type mechanosensitive ion channel component 1 (Piezo1): a promising therapeutic target and its modulators. J. Med. Chem. 65, 6441–6453 (2022).

    Article  PubMed  CAS  Google Scholar 

  9. Pathak, M. M. et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc. Natl. Acad. Sci. USA 111, 16148–16153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fang, X. Z. et al. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci. 11, 13 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Geng, J. et al. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nat. Commun. 12, 3519 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lacroix, J. J., Botello-Smith, W. M. & Luo, Y. Probing the gating mechanism of the mechanosensitive channel Piezo1 with the small molecule Yoda1. Nat. Commun. 9, 2029 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, J. et al. Magnetic nanobubble mechanical stress induces the Piezo1-Ca2+ -BMP2/Smad pathway to modulate neural stem cell fate and MRI/ultrasound dual imaging surveillance for ischemic stroke. Small 18, e2201123 (2022).

    Article  PubMed  Google Scholar 

  14. Li, F. et al. The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nat. Commun. 12, 3845 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Qu, J. et al. Piezo1 suppression reduces demyelination after intracerebral hemorrhage. Neural Regen. Res. 18, 1750–1756 (2023).

    PubMed  CAS  Google Scholar 

  16. Cui, J. et al. VSP-2 attenuates secretion of inflammatory cytokines induced by LPS in BV2 cells by mediating the PPARγ/NF-κB signaling pathway. Open Life Sci. 19, 20220861 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Millar, L. J., Shi, L., Hoerder-Suabedissen, A. & Molnár, Z. Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front. Cell. Neurosci. 11, 78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Geng, Z. et al. Ferroptosis and traumatic brain injury. Brain Res. Bull. 172, 212–219 (2021).

    Article  PubMed  CAS  Google Scholar 

  19. Percie, D. S. N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J. Physiol. 598, 3793–3801 (2020).

    Article  Google Scholar 

  20. Kilkenny, C. et al. Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLoS ONE 4, e7824 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mallard, C., Tremblay, M. E. & Vexler, Z. S. Microglia and neonatal brain injury. Neuroscience 405, 68–76 (2019).

    Article  PubMed  CAS  Google Scholar 

  22. Pierre, W. C. et al. Assessing therapeutic response non-invasively in a neonatal rat model of acute inflammatory white matter injury using high-field MRI. Brain Behav. Immun. 81, 348–360 (2019).

    Article  PubMed  CAS  Google Scholar 

  23. Zhou, N. et al. Conditioned medium-preconditioned EPCs enhanced the ability in oligovascular repair in cerebral ischemia neonatal rats. Stem Cell Res. Ther. 12, 118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ihara, T. et al. Different effects of GsMTx4 on nocturia associated with the circadian clock and Piezo1 expression in mice. Life Sci. 278, 119555 (2021).

    Article  PubMed  CAS  Google Scholar 

  25. Curzer, H. J., Perry, G., Wallace, M. C. & Perry, D. The three Rs of animal research: What they mean for the institutional animal care and use committee and why. Sci. Eng. Ethics 22, 549–565 (2016).

    Article  PubMed  Google Scholar 

  26. Sun, X. et al. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut 71, 129–147 (2022).

    Article  PubMed  CAS  Google Scholar 

  27. Pinto, B. I., Cruz, N. D., Lujan, O. R., Propper, C. R. & Kellar, R. S. In vitro scratch assay to demonstrate the effects of arsenic on skin cell migration. J. Vis. Exp. https://doi.org/10.3791/58838 (2019).

  28. Vorhees, C. V. & Williams, M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1, 848–858 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Seibenhener, M. L. & Wooten, M. C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. 96, e52434 (2015).

  30. Wang, Z. et al. Oligodendrocyte progenitor cell transplantation ameliorates preterm infant cerebral white matter injury in rats model. Neuropsychiatr. Dis. Treat. 19, 1935–1947 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Liu, H. et al. Piezo1 channels as force sensors in mechanical force-related chronic inflammation. Front. Immunol. 13, 816149 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yang, H. et al. Pain modulates dopamine neurons via a spinal-parabrachial-mesencephalic circuit. Nat. Neurosci. 24, 1402–1413 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mchugh, B. J. et al. Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum. J. Cell Sci. 123, 51–61 (2010).

    Article  PubMed  Google Scholar 

  34. Lai, A. et al. Mechanosensing by Piezo1 and its implications for physiology and various pathologies. Biol. Rev. Camb. Philos. Soc. 97, 604–614 (2022).

    Article  PubMed  CAS  Google Scholar 

  35. Zong, B. et al. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res. Rev. 90, 102026 (2023).

    Article  PubMed  CAS  Google Scholar 

  36. Zhang, Y., Zou, W., Dou, W., Luo, H. & Ouyang, X. Pleiotropic physiological functions of Piezo1 in human body and its effect on malignant behavior of tumors. Front. Physiol. 15, 1377329 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu, J. et al. Neutrophil infiltration and microglial shifts in sepsis induced preterm brain injury: pathological insights. Acta Neuropathol. Commun. 13, 79 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ge, H. et al. Ferrostatin-1 alleviates white matter injury via decreasing ferroptosis following spinal cord injury. Mol. Neurobiol. 59, 161–176 (2022).

    Article  PubMed  CAS  Google Scholar 

  39. Wang, B. et al. Dexpramipexole attenuates white matter injury to facilitate locomotion and motor coordination recovery via reducing ferroptosis after intracerebral hemorrhage. Oxid. Med. Cell. Longev. 2022, 6160701 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fu, W. et al. Rasd1 is involved in white matter injury through neuron-oligodendrocyte communication after subarachnoid hemorrhage. CNS Neurosci. Ther. 30, e14452 (2024).

    Article  PubMed  CAS  Google Scholar 

  41. Hirata, Y. et al. Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr. Biol. 33, 1282–1294.e5 (2023).

    Article  PubMed  CAS  Google Scholar 

  42. Qi, M. et al. Roles of mechanosensitive ion channel PIEZO1 in the pathogenesis of brain injury after experimental intracerebral hemorrhage. Neuropharmacology 251, 109896 (2024).

    Article  PubMed  CAS  Google Scholar 

  43. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mekhail, M., Almazan, G. & Tabrizian, M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog. Neurobiol. 96, 322–339 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Jiang, Y. B., Wei, K. Y., Zhang, X. Y., Feng, H. & Hu, R. White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci. Ther. 25, 1113–1125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jhelum, P. et al. Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J. Neurosci. 40, 9327–9341 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Shen, D. et al. Ferroptosis in oligodendrocyte progenitor cells mediates white matter injury after hemorrhagic stroke. Cell Death Dis. 13, 259 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hirschhorn, T. & Stockwell, B. R. The development of the concept of ferroptosis. Free Radic. Biol. Med. 133, 130–143 (2019).

    Article  PubMed  CAS  Google Scholar 

  49. Werner, L. et al. A novel ex vivo model to study therapeutic treatments for myelin repair following ischemic damage. Int. J. Mol. Sci. 24, 10972 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kang, Y. P. et al. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab. 33, 174–189.e7 (2021).

    Article  PubMed  CAS  Google Scholar 

  51. Luo, L., Zhang, Z., Weng, Y. & Zeng, J. Ferroptosis-related gene GCLC is a novel prognostic molecular and correlates with immune infiltrates in lung adenocarcinoma. Cells 11, 3371 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. May, T., Adesina, I., McGillivray, J. & Rinehart, N. J. Sex differences in neurodevelopmental disorders. Curr. Opin. Neurol. 32, 622–626 (2019).

    Article  PubMed  Google Scholar 

  53. Hedley, K. E. et al. Neonatal Chlamydia muridarum respiratory infection causes neuroinflammation within the brainstem during the early postnatal period. J. Neuroinflammation 21, 158 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research was supported by the Applied Basic Research Program of the Science and Technology Department of Sichuan Province (No.2022NSFSC0708), Technology Bureau Technology Innovation Research and Development Project of Chengdu Science (No. 2024-YF05-01905-SN), Sichuan Province Medical Association (No. Q2024044), and Chengdu Medical College Graduate Research and Innovation Fund (No. YCX2024-01-28).

Author information

Authors and Affiliations

Authors

Contributions

H.W., Z.G., S.C., and L.L. contributed to the design of the research and the drafting of this article. H.W. and Z.G. conducted the experiments and data analysis. Y.P., J.L., T.X., J.D., and X.G. supported the techniques and materials for the studies. L.L. offered financial support for the studies. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liqun Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Gou, Z., Chen, S. et al. White matter injury in neonatal rats is attenuated by GsMTx4 inhibiting oligodendrocyte precursor cell ferroptosis via the PIEZO1/GCLC signaling pathway. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04596-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-025-04596-8

Search

Quick links