Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental exposures in the neonatal intensive care unit impacting neurodevelopmental outcomes for neonates

Abstract

Critically ill preterm and term neonates are uniquely vulnerable to and constantly confront potential harmful and unintended exposures in every aspect of their care, including diagnostic imaging, sensory environments, medications, nutrition, blood products, and device exposures. The rapidly changing pathology, physiology, and metabolism of these infants, along with a lack of treatments tailored to the needs of neonates, lead to unintended negative consequences with impacts reaching far out into adulthood. Families, nurses, clinicians, and researchers provide the best care for neonates with the resources and knowledge available, but more needs to be done from the healthcare policy and societal levels. More research is needed to understand the negative impacts of environmental exposures on neonates and children in general. Concerted efforts should focus on eliminating known toxic and harmful substances from commercial products used in neonatal care, and alternatives should be made available. Resource allocation is needed by community leaders and health policy makers, through regulations and incentives, to ensure that neonates and children can have healthy, happy, and productive lives. Our society should be judged by how we care for and treat this most vulnerable population, who deserve environments and treatments free from unintended, unnecessary harmful exposures.

Impact

  • Technological advances have significantly improved survival of critically ill term and pre-term infants, but pose a unique challenge of exposure to multiple environmental toxins.

  • In this review, we have summarized these exposures and the pathways through which they may negatively impact the neurodevelopmental outcomes in this highly vulnerable population.

  • Ongoing environmental exposures in the NICU are a global healthcare problem and need policies and resources in place to mitigate their negative impact on infant and child health outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Stark, A. et al. Medication use in the neonatal intensive care unit and changes from 2010 to 2018. J. Pediatr. 240, 66–71.e64 (2022).

    Article  PubMed  Google Scholar 

  2. Vachharajani, A., Vachharajani, N. A. & Najaf, T. Neonatal Radiation Exposure. NeoReviews 14, e190–e197 (2013).

    Article  Google Scholar 

  3. Berlin, S. in Principles of Neonatology (Maheshwari, A. ed.) 33–36 (Elsevier, 2024).

  4. Brody, A. S., Frush, D. P., Huda, W. & Brent, R. L. Radiation Risk to Children from Computed Tomography. Pediatrics 120, 677–682 (2007).

    Article  PubMed  Google Scholar 

  5. Edison, P. et al. Reducing radiation hazard opportunities in neonatal unit: quality improvement in radiation safety practices. BMJ Open Qual. 6, e000128 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bhattacharjee, I., Volpe, M., Bhattacharya, S., Sibley, C. & Church, P. Neurodevelopmental impact of early diagnostic imaging in preterm infants: quantifying risk and the role of point-of-care ultrasound. Front. Pediatr. 13, 1642629 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gislason-Lee, A. J. Patient X-Ray Exposure and Alara in the Neonatal Intensive Care Unit: Global Patterns. Pediatr. Neonatol. 62, 3–10 (2021).

    Article  PubMed  Google Scholar 

  8. Makri, T. et al. Radiation Risk Assessment in Neonatal Radiographic Examinations of the Chest and Abdomen: A Clinical and Monte Carlo Dosimetry Study. Phys. Med. Biol. 51, 5023–5033 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kartikeswar, G. A. P., Parikh, T. B., Pandya, D. & Pandit, A. Ionizing Radiation Exposure in Nicu. Indian J. Pediatr. 87, 158–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Kutanzi, K. R., Lumen, A., Koturbash, I. & Miousse, I. R. Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations. Int. J. Environ. Res. Public Health 13 (2016).

  11. Vol. 2 (Radiation, U. N. S. C. O. T. E. O. A. ed. (United Nations, 2008).

  12. Wilson-Costello, D., Rao, P. S., Morrison, S. & Hack, M. Radiation Exposure from Diagnostic Radiographs in Extremely Low Birth Weight Infants. Pediatrics 97, 369–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Frush, D. in AAP News (American Academy of Pediatrics, 2020).

  14. Seibert, J. A. Digital Radiography: Image Quality and Radiation Dose. Health Phys. 95, 586–598 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Longo, M. et al. Quantification of Scatter Radiation from Radiographic Procedures in a Neonatal Intensive Care Unit. Pediatr. Radio. 48, 715–721 (2018).

    Article  Google Scholar 

  16. Khan, I. & Khan, M. A. B. in Statpearls (StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC., 2025).

  17. Mayhew, K. J., Lawrence, S. L., Squires, J. E. & Harrison, D. Elevated Sound Levels in the Neonatal Intensive Care Unit: What Is Causing the Problem? Adv. Neonatal Care 22, E207–e216 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. White, R. D. Recommended Standards for Newborn Icu Design, 9th Edition. J. Perinatol. 40, 2–4 (2020).

    Article  PubMed  Google Scholar 

  19. Balk, S. J., Bochner, R. E., Ramdhanie, M. A. & Reilly, B. K. Preventing Excessive Noise Exposure in Infants, Children, and Adolescents. Pediatrics 152, e2023063752 (2023).

  20. Pati, S. et al. Chronic Postnatal Chemogenetic Activation of Forebrain Excitatory Neurons Evokes Persistent Changes in Mood Behavior. Elife 9, e56171 (2020).

  21. de Paula Machado, A. C. C., de Castro Magalhães, L., de Oliveira, S. R. & Bouzada, M. C. F. Is Sensory Processing Associated with Prematurity, Motor and Cognitive Development at 12 Months of Age? Early Hum. Dev. 139, 104852 (2019).

    Article  PubMed  Google Scholar 

  22. Lickliter, R. The Integrated Development of Sensory Organization. Clin. Perinatol. 38, 591–603 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Smith, G. C. et al. Neonatal Intensive Care Unit Stress Is Associated with Brain Development in Preterm Infants. Ann. Neurol. 70, 541–549 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ryckman, J., Hilton, C., Rogers, C. & Pineda, R. Sensory Processing Disorder in Preterm Infants During Early Childhood and Relationships to Early Neurobehavior. Early Hum. Dev. 113, 18–22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lejeune, F. et al. Sound Interferes with the Early Tactile Manual Abilities of Preterm Infants. Sci. Rep. 6, 23329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Almadhoob, A. & Ohlsson, A. Sound Reduction Management in the Neonatal Intensive Care Unit for Preterm or Very Low Birth Weight Infants. Cochrane Database Syst. Rev. 1, Cd010333 (2020).

    PubMed  Google Scholar 

  27. Taheri, L., Jahromi, M. K., Abbasi, M. & Hojat, M. Effect of Recorded Male Lullaby on Physiologic Response of Neonates in NICU. Appl Nurs. Res. 33, 127–130 (2017).

    Article  PubMed  Google Scholar 

  28. Neri, E. et al. Parental Book-Reading to Preterm Born Infants in NICU: The Effects on Language Development in the First Two Years. Int. J. Environ. Res. Public Health 18, 11361 (2021).

  29. Boissel, L. et al. A Narrative Review of the Effect of Parent-Child Shared Reading in Preterm Infants. Front. Pediatr. 10, 860391 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cevasco-Trotter, A. M., Hamm, E. L., Yang, X. & Parton, J. Multimodal Neurological Enhancement Intervention for Self-Regulation in Premature Infants. Adv. Neonatal Care 19, E3–e11 (2019).

    Article  PubMed  Google Scholar 

  31. Teles, L. A., Arcanjo, F. P. N., Cardoso, K. M. & Justino, J. S. Impact of skin-to-skin contact on acute procedural pain in newborns: a systematic review and meta-analysis. J. Pediatr. 101, 101442 (2025).

    Article  Google Scholar 

  32. La Rosa, V. L., Geraci, A., Iacono, A. & Commodari, E. Affective Touch in Preterm Infant Development: Neurobiological Mechanisms and Implications for Child-Caregiver Attachment and Neonatal Care. Children (Basel) 11, 1407 (2024).

  33. Séassau, A., Munos, P., Gire, C., Tosello, B. & Carchon, I. Neonatal Care Unit Interventions on Preterm Development. Children (Basel) 10, 999 (2023).

  34. Nist, M. D., Cistone, N. & Pickler, R. H. Improving Outcomes for Preterm Infants: Mitigating Stress Exposure. Semin. Perinatol. 152153 (2025). Epub ahead of print.

  35. Altimier, L. & Phillips, R. The Neonatal Integrative Developmental Care Model: Advanced Clinical Applications of the Seven Core Measures for Neuroprotective Family-Centered Developmental Care. Newborn Infant Nurs. Rev. 16, 230–244 (2016).

    Article  Google Scholar 

  36. Purpura, G. et al. Effects of Social and Sensory Deprivation in Newborns: A Lesson from the Covid-19 Experience. Early Hum. Dev. 185, 105853 (2023).

    Article  PubMed  Google Scholar 

  37. El-Atawi, K., Alallah, J., Al Qurashi, M. & Saleh, M. Impact of Single-Family Room Care on Neonatal Outcomes: A Systematic Review. Cureus 17, e88499 (2025).

    PubMed  PubMed Central  Google Scholar 

  38. van Veenendaal, N. R. et al. Hospitalising Preterm Infants in Single Family Rooms Versus Open Bay Units: A Systematic Review and Meta-Analysis of Impact on Parents. EClinicalMedicine 23, 100388 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. O’Callaghan, N., Dee, A. & Philip, R. K. Evidence-Based Design for Neonatal Units: A Systematic Review. Matern Health Neonatol. Perinatol. 5, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pineda, R. G. et al. Alterations in Brain Structure and Neurodevelopmental Outcome in Preterm Infants Hospitalized in Different Neonatal Intensive Care Unit Environments. J. Pediatr. 164, 52–60.e52 (2014).

    Article  PubMed  Google Scholar 

  41. Robertson, A. F. Reflections on Errors in Neonatology Iii. The “Experienced” Years, 1970 to 2000. J. Perinatol. 23, 240–249 (2003).

    Article  PubMed  Google Scholar 

  42. O’Brien, F. et al. Making Medicines Baby Size: The Challenges in Bridging the Formulation Gap in Neonatal Medicine. Int. J. Mol. Sci. 20, 2688 (2019).

  43. Whittaker, A. et al. Toxic Additives in Medication for Preterm Infants. Arch. Dis. Child Fetal Neonatal Ed. 94, F236–F240 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Akinmboni, T. O., Davis, N. L., Falck, A. J., Bearer, C. F. & Mooney, S. M. Excipient Exposure in Very Low Birth Weight Preterm Neonates. J. Perinatol. 38, 169–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Chung, E., Reinaker, K. & Meyers, R. Ethanol Content of Medications and Its Effect on Blood Alcohol Concentration in Pediatric Patients. J. Pediatr. Pharm. Ther. 29, 188–194 (2024).

    Google Scholar 

  46. Johnson, J., Akinboyo, I. C. & Schaffzin, J. K. Infection Prevention in the Neonatal Intensive Care Unit. Clin. Perinatol. 48, 413–429 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Polin, R. A. et al. Strategies for Prevention of Health Care–Associated Infections in the Nicu. Pediatrics 129, e1085–e1093 (2012).

    Article  PubMed  Google Scholar 

  48. Muhd Helmi, M. A., Lai, N. M., Van Rostenberghe, H., Ayub, I. & Mading, E. Antiseptic Solutions for Skin Preparation During Central Catheter Insertion in Neonates. Cochrane Database Syst. Rev. 5, Cd013841 (2023).

    PubMed  Google Scholar 

  49. Chapman, A. K. et al. Absorption and Tolerability of Aqueous Chlorhexidine Gluconate Used for Skin Antisepsis Prior to Catheter Insertion in Preterm Neonates. J. Perinatol. 33, 768–771 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kieran, E. A. et al. 2% Chlorhexidine-70% Isopropyl Alcohol Versus 10% Povidone-Iodine for Insertion Site Cleaning before Central Line Insertion in Preterm Infants: A Randomised Trial. Arch. Dis. Child Fetal Neonatal Ed. 103, F101–f106 (2018).

    Article  PubMed  Google Scholar 

  51. Devlin, L. A. et al. Neonatal Opioid Withdrawal Syndrome: A Review of the Science and a Look toward the Use of Buprenorphine for Affected Infants. J. Perinatol. 42, 300–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Yilmaz, B., Terekeci, H., Sandal, S. & Kelestimur, F. Endocrine Disrupting Chemicals: Exposure, Effects on Human Health, Mechanism of Action, Models for Testing and Strategies for Prevention. Rev. Endocr. Metab. Disord. 21, 127–147 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Demeneix, B. A. How Fossil Fuel-Derived Pesticides and Plastics Harm Health, Biodiversity, and the Climate. Lancet Diab. Endocrinol. 8, 462–464 (2020).

    Article  CAS  Google Scholar 

  54. Bommarito, P. A. et al. Prenatal Exposure to Nonpersistent Chemicals and Fetal-to-Childhood Growth Trajectories. Epidemiology 35, 874–884 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wager, J. L. & Thompson, J. A. Development and Child Health in a World of Synthetic Chemicals. Pediatr. Res. 97, 1833–1839 (2025).

    Article  PubMed  Google Scholar 

  56. Edaes, F. S. & de Souza, C. B. Bps and Bpf Are as Carcinogenic as Bpa and Are Not Viable Alternatives for Its Replacement. Endocr. Metab. Immune Disord. Drug Targets 22, 927–934 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Martín-Carrasco, I., Carbonero-Aguilar, P., Dahiri, B., Moreno, I. M. & Hinojosa, M. Comparison between Pollutants Found in Breast Milk and Infant Formula in the Last Decade: A Review. Sci. Total Environ. 875, 162461 (2023).

    Article  PubMed  Google Scholar 

  58. Rivard, C. et al. Detection of Titanium Dioxide Particles in Human, Animal and Infant Formula Milk. Sci. Total Environ. 994, 180040 (2025).

    Article  CAS  PubMed  Google Scholar 

  59. Gatti, A. M. et al. Heavy Metal Nanoparticle Detection in Human and Formula Milk. Foods 13, 3178 (2024).

  60. Serreau, R., Terbeche, Y. & Rigourd, V. Pollutants in Breast Milk: A Scoping Review of the Most Recent Data in 2024. Healthcare (Basel) 12, 680 (2024).

  61. Tian, Y. et al. Occurrence and Nationwide Risk Assessment of Typical Food Processing Contaminants in Human Milk in China. J. Agric Food Chem. 73, 6917–6930 (2025).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, H. et al. Infantile Internal and External Exposure to Neonicotinoid Insecticides: A Comparison of Levels across Various Sources. Environ. Sci. Technol. 57, 5358–5367 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Lorber, M. & Toms, L. L. Use of a Simple Pharmacokinetic Model to Study the Impact of Breast-Feeding on Infant and Toddler Body Burdens of Pcb 153, Bde 47, and Dde. Chemosphere 185, 1081–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Witczak, A., Pohoryło, A. & Abdel-Gawad, H. Endocrine-Disrupting Organochlorine Pesticides in Human Breast Milk: Changes During Lactation. Nutrients 13, 229 (2021).

  65. Mekonen, S., Ambelu, A., Wondafrash, M., Kolsteren, P. & Spanoghe, P. Exposure of Infants to Organochlorine Pesticides from Breast Milk Consumption in Southwestern Ethiopia. Sci. Rep. 11, 22053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kao, C. C. et al. Residue Levels of Organochlorine Pesticides in Breast Milk and Its Associations with Cord Blood Thyroid Hormones and the Offspring’s Neurodevelopment. Int. J. Environ. Res. Public Health 16, 1438 (2019).

  67. Barceló, D., Picó, Y. & Alfarhan, A. H. Microplastics: Detection in Human Samples, Cell Line Studies, and Health Impacts. Environ. Toxicol. Pharm. 101, 104204 (2023).

    Article  Google Scholar 

  68. Landrigan, P. J. et al. The Minderoo-Monaco Commission on Plastics and Human Health. Ann. Glob. Health 89, 23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Di Renzo, G. C. et al. International Federation of Gynecology and Obstetrics Opinion on Reproductive Health Impacts of Exposure to Toxic Environmental Chemicals. Int J. Gynaecol. Obstet. 131, 219–225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. LaKind, J. S., Naiman, J., Verner, M. A., Lévêque, L. & Fenton, S. Per- and Polyfluoroalkyl Substances (PFAS) in Breast Milk and Infant Formula: A Global Issue. Environ. Res. 219, 115042 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Dickerson, A. S., Frndak, S., DeSantiago, M., Mohan, A. & Smith, G. S. Environmental Exposure Disparities and Neurodevelopmental Risk: A Review. Curr. Environ. Health Rep. 10, 73–83 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cathey, A. L. et al. Exploratory Profiles of Phenols, Parabens, and Per- and Poly-Fluoroalkyl Substances among Nhanes Study Participants in Association with Previous Cancer Diagnoses. J. Expo. Sci. Environ. Epidemiol. 33, 687–698 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nair, A. A. et al. Environmental Exposure Disparities in Ultrafine Particles and Pm(2.5) by Urbanicity and Socio-Demographics in New York State, 2013-2020. Environ. Res. 239, 117246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sargis, R. M., Heindel, J. J. & Padmanabhan, V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol. 10, 33 (2019).

    Article  Google Scholar 

  75. Reams, M. A. & Irving, J. K. Applying Community Resilience Theory to Engagement with Residents Facing Cumulative Environmental Exposure Risks: Lessons from Louisiana’s Industrial Corridor. Rev. Environ. Health 34, 235–244 (2019).

    Article  PubMed  Google Scholar 

  76. Meek, J. Y. & Noble, L. Policy Statement: Breastfeeding and the Use of Human Milk. Pediatrics 150 (2022).

  77. Kim, D. H. Transfusion Practice in Neonates. Korean J. Pediatr. 61, 265–270 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Navarro, M., Negre, S., Golombek, S., Matoses, M. L. & Vento, M. Intravenous Immune Globulin: Clinical Applications in the Newborn. NeoReviews 11, e370–e378 (2010).

    Article  Google Scholar 

  79. Haass, K. A., Sapiano, M. R. P., Savinkina, A., Kuehnert, M. J. & Basavaraju, S. V. Transfusion-Transmitted Infections Reported to the National Healthcare Safety Network Hemovigilance Module. Transfus. Med. Rev. 33, 84–91 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Scott, S. R. & Wu, Z. Risks and Challenges of Hiv Infection Transmitted Via Blood Transfusion. Biosaf. Health 01, 124–128 (2019).

    Article  Google Scholar 

  81. Dodd, R. Y. et al. Screening Blood Donors for Hiv, Hcv, and Hbv at the American Red Cross: 10-Year Trends in Prevalence, Incidence, and Residual Risk, 2007 to 2016. Transfus. Med Rev. 34, 81–93 (2020).

    Article  PubMed  Google Scholar 

  82. CDC. Clinical Testing Guidance for Blood Safety, https://www.cdc.gov/blood-safety/hcp/diagnosis-testing/index.html (2025).

  83. Sherief, L. M. et al. Cmv, B and C Hepatitis among Multi-Transfused Hereditary Hemolytic Anemia Children: An Updated Egyptian Experience. Ital. J. Pediatr. 47, 117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bianchi, M. et al. Infectious Complications in Neonatal Transfusion: Narrative Review and Personal Contribution. Transfus. Apher. Sci. 59, 102951 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Delaney, M. et al. Postnatal Cytomegalovirus Infection: A Pilot Comparative Effectiveness Study of Transfusion Safety Using Leukoreduced-Only Transfusion Strategy. Transfusion 56, 1945–1950 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chaudhary, N., Kilpatrick, R. & Singh, R. Red Cell Transfusion Related Toxic Metals Exposure for Fetus and Newborns: An under-Recognized Public Health Concern. Pediatr. Res. 97, 473–474 (2025).

    Article  PubMed  Google Scholar 

  87. Chen, M. et al. Environmental Lead Risk in the 21st Century. Commun. Earth Environ. 6, 776 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Puia-Dumitrescu, M. et al. Patterns of Phlebotomy Blood Loss and Transfusions in Extremely Low Birth Weight Infants. J. Perinatol. 39, 1670–1675 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Raffaeli, G. et al. Iron Homeostasis Disruption and Oxidative Stress in Preterm Newborns. Nutrients 12 (2020).

  90. Ng, P. C. et al. Hepatic Iron Storage in Very Low Birthweight Infants after Multiple Blood Transfusions. Arch. Dis. Child Fetal Neonatal Ed. 84, F101–F105 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Park, S. H. & Kim, H. M. The Iron Status of Very Low Birth Weight Infants Receiving Multiple Erythrocyte Transfusions During Hospitalization in the Neonatal Intensive Care Unit. Pediatr. Gastroenterol. Hepatol. Nutr. 18, 100–107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Perrone, S., Tataranno, L. M., Stazzoni, G., Ramenghi, L. & Buonocore, G. Brain Susceptibility to Oxidative Stress in the Perinatal Period. J. Matern. Fetal Neonatal Med. 28, 2291–2295 (2015).

    Article  PubMed  Google Scholar 

  93. Wang-Rodriguez, J. et al. Immune Response to Blood Transfusion Invery-Low-Birthweight Infants. Transfusion 40, 25–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Youssef, L. A. & Spitalnik, S. L. Transfusion-Related Immunomodulation: A Reappraisal. Curr. Opin. Hematol. 24, 551–557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Muszynski, J. A. et al. Transfusion-Related Immunomodulation: Review of the Literature and Implications for Pediatric Critical Illness. Transfusion 57, 195–206 (2017).

    Article  PubMed  Google Scholar 

  96. Yang, Y. et al. The Effect of Immunoglobulin Treatment for Hemolysis on the Incidence of Necrotizing Enterocolitis - a Meta-Analysis. Eur. Rev. Med. Pharm. Sci. 20, 3902–3910 (2016).

    CAS  Google Scholar 

  97. Valieva, O. A., Strandjord, T. P., Mayock, D. E. & Juul, S. E. Effects of Transfusions in Extremely Low Birth Weight Infants: A Retrospective Study. J. Pediatr. 155, 331–337.e331 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Z., Huang, X. & Lu, H. Association between Red Blood Cell Transfusion and Bronchopulmonary Dysplasia in Preterm Infants. Sci. Rep. 4, 4340 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Korhonen, P., Tammela, O., Koivisto, A. M., Laippala, P. & Ikonen, S. Frequency and Risk Factors in Bronchopulmonary Dysplasia in a Cohort of Very Low Birth Weight Infants. Early Hum. Dev. 54, 245–258 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Mally, P. et al. Association of Necrotizing Enterocolitis with Elective Packed Red Blood Cell Transfusions in Stable, Growing, Premature Neonates. Am. J. Perinatol. 23, 451–458 (2006).

    Article  PubMed  Google Scholar 

  101. Josephson, C. D. et al. Do Red Cell Transfusions Increase the Risk of Necrotizing Enterocolitis in Premature Infants? J. Pediatr. 157, 972–978.e971-973 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Blau, J. et al. Transfusion-Related Acute Gut Injury: Necrotizing Enterocolitis in Very Low Birth Weight Neonates after Packed Red Blood Cell Transfusion. J. Pediatr. 158, 403–409 (2011).

    Article  PubMed  Google Scholar 

  103. Marin, T. et al. Red Blood Cell Transfusion-Related Necrotizing Enterocolitis in Very-Low-Birthweight Infants: A near-Infrared Spectroscopy Investigation. Transfusion 53, 2650–2658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. El-Dib, M., Narang, S., Lee, E., Massaro, A. N. & Aly, H. Red Blood Cell Transfusion, Feeding and Necrotizing Enterocolitis in Preterm Infants. J. Perinatol. 31, 183–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Christensen, R. D. et al. Association, among Very-Low-Birthweight Neonates, between Red Blood Cell Transfusions in the Week after Birth and Severe Intraventricular Hemorrhage. Transfusion 54, 104–108 (2014).

    Article  PubMed  Google Scholar 

  106. Christensen, R. D. Associations between “Early” Red Blood Cell Transfusion and Severe Intraventricular Hemorrhage, and between “Late” Red Blood Cell Transfusion and Necrotizing Enterocolitis. Semin. Perinatol. 36, 283–289 (2012).

    Article  PubMed  Google Scholar 

  107. Baer, V. L., Lambert, D. K., Henry, E., Snow, G. L. & Christensen, R. D. Red Blood Cell Transfusion of Preterm Neonates with a Grade 1 Intraventricular Hemorrhage Is Associated with Extension to a Grade 3 or 4 Hemorrhage. Transfusion 51, 1933–1939 (2011).

    Article  PubMed  Google Scholar 

  108. Inder, T. E., Clemett, R. S., Austin, N. C., Graham, P. & Darlow, B. A. High Iron Status in Very Low Birth Weight Infants Is Associated with an Increased Risk of Retinopathy of Prematurity. J. Pediatr. 131, 541–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Dani, C. et al. The Role of Blood Transfusions and Iron Intake on Retinopathy of Prematurity. Early Hum. Dev. 62, 57–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Bernard, L. et al. Association between urinary metabolites and the exposure of intensive care newborns to plasticizers of medical devices used for their care management. Metabolites 11 (2021).

  111. Panneel, L. et al. Ongoing Exposure to Endocrine Disrupting Phthalates and Alternative Plasticizers in Neonatal Intensive Care Unit Patients. Environ. Int. 186, 108605 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Macleod, D. J. et al. Androgen Action in the Masculinization Programming Window and Development of Male Reproductive Organs. Int J. Androl. 33, 279–287 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Bernard, L. et al. Medical Devices Used in NICU: The Main Source of Plasticisers’ Exposure of Newborns. Sci. Total Environ. 858, 159994 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Iribarne-Durán, L. M. et al. Presence of Bisphenol a and Parabens in a Neonatal Intensive Care Unit: An Exploratory Study of Potential Sources of Exposure. Environ. Health Perspect. 127, 117004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Panneel, L., Malarvannan, G., Jorens, P. G., Covaci, A. & Mulder, A. Plasticizers in the Neonatal Intensive Care Unit: A Review on Exposure Sources and Health Hazards. Crit. Rev. Environ. Sci. Technol. 52, 3947–3972 (2022).

    Article  Google Scholar 

  116. Keleş, E. et al. Phthalate Exposure Induces Cell Death and Ferroptosis in Neonatal Microglial Cells. Turk. J. Med Sci. 54, 1102–1115 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Panneel, L. et al. One Year Respiratory and Neurodevelopmental Outcome of Premature Neonates after Exposure to Plasticizers in the Neonatal Intensive Care Unit - a Prospective Cohort Study. Environ. Res. 274, 121266 (2025).

    Article  CAS  PubMed  Google Scholar 

  118. El-Metwally, D. et al. Urinary Metabolites of Volatile Organic Compounds of Infants in the Neonatal Intensive Care Unit. Pediatr. Res. 83, 1158–1164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Almeida, M. O., Lanza, M. R. V. & Honorio, K. M. A Study of Possible Substitutes for the Endocrine Disruptor Dehp in Two Hormone Receptors. J. Biomol. Struct. Dyn. 40, 12516–12525 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by Internal Funds, Department of Pediatrics, Tufts University School of Medicine, Boston, MA.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the conceptualization and drafting of the final review article. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Rachana Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilpatrick, R., Chaudhary, N., Eze-Njoku, C. et al. Environmental exposures in the neonatal intensive care unit impacting neurodevelopmental outcomes for neonates. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04743-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-025-04743-1

Search

Quick links