Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Identification of key mitochondria-related genes in necrotizing enterocolitis using single-cell hdWGCNA and experimental verification

Abstract

Background

Necrotizing enterocolitis (NEC) is a severe gastrointestinal disorder in preterm infants. The interplay between mitochondrial metabolism and immune inflammation in its development is not fully understood.

Methods

Single-cell data were analyzed using dimensionality reduction, clustering, and the high-dimensional weighted gene co-expression network analysis (hdWGCNA) algorithm to identify key gene modules in monocytes. GSE46619 was integrated with the MitoCarta3.0 to identify mitochondria-associated differentially expressed genes (MitoDEGs). Acyl-CoA synthetase long-chain family member 1 (ACSL1) was selected as a candidate. Immune infiltration was evaluated via the CIBERSORT algorithm, and a competing endogenous RNA (ceRNA) regulatory network was constructed using Cytoscape. The expression and function of ACSL1 were validated both in vivo and in vitro, using immunohistochemistry (IHC), qRT-PCR, western blot, and siRNA knockdown.

Results

A key monocyte subset was identified in NEC. Integrated analysis revealed three MitoDEGs (ACSL1, SOD2, SLC25A37) were linked to NEC, with ACSL1 showing the most significant upregulation. ACSL1 expression correlated strongly with immune cell infiltration and was confirmed to be elevated in vivo and in vitro models. Knocking down ACSL1 suppressed lipopolysaccharide (LPS)-induced inflammatory factor expression and ROS production.

Conclusion

ACSL1 plays a critical role in the pathogenesis of NEC, suggesting its potential as a novel biomarker.

Impact

  • Our study reveals massive monocyte infiltration and identifies the mitochondria-related gene ACSL1 as highly expressed and functionally significant in NEC.

  • This is the first integrated analysis (single-cell, hdWGCNA, MitoCarta3.0) pinpointing ACSL1 as a novel immunometabolic hub specific to NEC pathophysiology.

  • ACSL1 provides a crucial mechanistic link between mitochondrial function and NEC development.

  • It significantly correlates with key immune cells (neutrophils/mast cells/macrophages/T cells), highlighting its role in NEC immune dysregulation.

  • These findings reveal a critical role of ACSL1 in NEC pathogenesis, highlighting its potential as a novel biomarker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell analyses identify monocyte subpopulations as key cellular components in NEC.
Fig. 2: Central modules identified by hdWGCNA that are closely associated with monocytes in NEC.
Fig. 3: Pseudo-time trajectory analysis.
Fig. 4: Identification of DEGs in NEC and correlation analysis of ACSL1.
Fig. 5: Establishment of an animal model of NEC and confirmation of ACSL1 expression in NEC mice.
Fig. 6: Elevation of ACSL1 Expression in NEC and Inhibition of Inflammatory Response and ROS by ACSL1 Knockdown.

Similar content being viewed by others

Data availability

All data generated for this manuscript have been included in this article. The datasets generated and analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Niño, D. F., Sodhi, C. P. & Hackam, D. J. Necrotizing enterocolitis: New insights into pathogenesis and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 13, 590–600 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nolan, L. S., Wynn, J. L. & Good, M. Exploring clinically-relevant experimental models of neonatal shock and necrotizing enterocolitis. Shock 53, 596–604 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jones, I. H. & Hall, N. J. Contemporary outcomes for infants with necrotizing enterocolitis-A systematic review. J. Pediatr. 220, 86–92.e83 (2020).

    Article  PubMed  Google Scholar 

  4. Egozi, A. et al. Single-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis. PLoS Biol. 21, e3002124 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, H., Feng, Y. W. & Yao, Y. M. Potential therapy strategy: Targeting mitochondrial dysfunction in sepsis. Mil. Med. Res. 5, 41 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Lee, H., Jeon, J. H. & Kim, E. S. Mitochondrial dysfunctions in T cells: Focus on inflammatory bowel disease. Front. Immunol. 14, 1219422 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tiku, V., Tan, M. W. & Dikic, I. Mitochondrial functions in infection and immunity. Trends Cell Biol. 30, 263–275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, B. et al. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G573–G584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verma, A. et al. The role of the mitochondrial protein VDAC1 in inflammatory bowel disease: a potential therapeutic target. Mol. Ther. 30, 726–744 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Leek, J. T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733–739 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Dong, B. et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun. Biol. 3, 778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, R., Zhao, M., Miao, C., Shi, X. & Lu, J. Identification and validation of key biomarkers associated with macrophages in nonalcoholic fatty liver disease based on hdWGCNA and machine learning. Aging (Albany NY) 15, 15451–15472 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 3, 100498 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan, K. Y. et al. Genome-wide expression profiles of necrotizing enterocolitis versus spontaneous intestinal perforation in human intestinal tissues: dysregulation of functional pathways. Ann. Surg. 260, 1128–1137 (2014).

    Article  PubMed  Google Scholar 

  17. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42, D92–D97 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Furió-Tarí, P., Tarazona, S., Gabaldón, T., Enright, A. J. & Conesa, A. spongeScan: A web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Res 44, W176–W180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian, Y. et al. A Neonatal BALB/c mouse model of necrotizing enterocolitis. J. Vis. Exp. https://doi.org/10.3791/63252 (2021).

  22. Jilling, T., Lu, J., Jackson, M. & Caplan, M. S. Intestinal epithelial apoptosis initiates gross bowel necrosis in an experimental rat model of neonatal necrotizing enterocolitis. Pediatr. Res. 55, 622–629 (2004).

    Article  PubMed  Google Scholar 

  23. Sun, H. et al. Single-cell RNA-seq analysis identifies meniscus progenitors and reveals the progression of meniscus degeneration. Ann. Rheum. Dis. 79, 408–417 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, X., Wang, Q., Wang, W., Chen, X. & Lu, S. Study on molecular mechanism of intervertebral disc degeneration by single cell hdWGCNA combined with transcriptome sequencing. Noncoding RNA Res. 10, 177–191 (2025).

    Article  CAS  PubMed  Google Scholar 

  25. Gan, Y. et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 9, 37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, J., Yin, L. & He, L. The MicroRNA landscapes profiling reveals potential signatures of necrotizing enterocolitis in infants. J. Comput. Biol. 27, 30–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Rich, B. S. & Dolgin, S. E. Necrotizing enterocolitis. Pediatr. Rev. 38, 552–559 (2017).

    Article  PubMed  Google Scholar 

  28. Ho, G. T. & Theiss, A. L. Mitochondria and inflammatory bowel diseases: Toward a stratified therapeutic intervention. Annu. Rev. Physiol. 84, 435–459 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Haque, P. S., Kapur, N., Barrett, T. A. & Theiss, A. L. Mitochondrial function and gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 21, 537–555 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhu, F. et al. Blockage of NLRP3 inflammasome activation ameliorates acute inflammatory injury and long-term cognitive impairment induced by necrotizing enterocolitis in mice. J. Neuroinflamm. 18, 66 (2021).

    Article  CAS  Google Scholar 

  31. Duess, J. W. et al. Necrotizing enterocolitis, gut microbes, and sepsis. Gut Microbes 15, 2221470 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Olaloye, O. O. et al. CD16+CD163+ monocytes traffic to sites of inflammation during necrotizing enterocolitis in premature infants. J. Exp. Med. 218, e20200344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Z. Y. et al. ACSL1, CH25H, GPCPD1, and PLA2G12A as the potential lipid-related diagnostic biomarkers of acute myocardial infarction. Aging (Albany NY) 15, 1394–1411 (2023).

    CAS  PubMed  Google Scholar 

  34. Wang, C. H., Surbhi, Goraya, S., Byun, J. & Pennathur, S. Fatty acids and inflammatory stimuli induce expression of long-chain acyl-CoA synthetase 1 to promote lipid remodeling in diabetic kidney disease. J. Biol. Chem. 300, 105502 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Nakakuki, M., Kawano, H., Notsu, T. & Imada, K. Eicosapentaenoic acid suppresses palmitate-induced cytokine production by modulating long-chain acyl-CoA synthetase 1 expression in human THP-1 macrophages. Atherosclerosis 227, 289–296 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Kalugotla, G. et al. Frontline Science: Acyl-CoA synthetase 1 exacerbates lipotoxic inflammasome activation in primary macrophages. J. Leukoc. Biol. 106, 803–814 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Soppert, J., Lehrke, M., Marx, N., Jankowski, J. & Noels, H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev. 159, 4–33 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Li, X. et al. Endothelial acyl-CoA synthetase 1 is not required for inflammatory and apoptotic effects of a saturated fatty acid-rich environment. Arterioscler Thromb. Vasc. Biol. 33, 232–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, S. H. & Kim, H. Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-A mini-review. Nutrients 10, 1137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Khaloian, S. et al. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn’s disease recurrence. Gut 69, 1939–1951 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors made substantial contributions to the study. J.W. and Q.Y. contributed to the study conception and design. Y.C. and K.G. conducted the experiments, collected and analyzed the data. N.C. wrote the original draft of the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qiyou Yin or Jian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gao, K., Chen, N. et al. Identification of key mitochondria-related genes in necrotizing enterocolitis using single-cell hdWGCNA and experimental verification. Pediatr Res (2026). https://doi.org/10.1038/s41390-026-04779-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41390-026-04779-x

Search

Quick links