Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting astrocyte-monocyte-neuron crosstalk in spinal cord injury: therapeutic insights from methyl gallate

Abstract

Study design

Integrative multi-omics cross-sectional study combining scRNA-seq, bulk transcriptomics, Mendelian randomization, and network pharmacology with molecular docking.

Objective

To investigate the therapeutic mechanisms of methyl gallate (MG) in spinal cord injury (SCI) through the lens of cell-type-specific pathways and immune regulation.

Setting

Publicly available SCI transcriptomic datasets and GWAS summary data were analyzed using established bioinformatics platforms.

Methods

This study integrated single-cell RNA sequencing (scRNA-seq), transcriptomics, genome-wide association study (GWAS)-based Mendelian randomization (MR), and network pharmacology to explore MG’s effects on SCI. Temporal scRNA-seq profiles were analyzed from mice with subacute SCI (days 3 to 14 post-injury) to identify changes in astrocyte dynamics and glia-neuron interactions. Differential gene expression and functional enrichment analyses were performed, followed by drug–target prediction and molecular docking.

Results

scRNA-seq revealed a significant reduction in astrocyte populations and disrupted astrocyte–monocyte–neuron communication post-SCI. A total of 959 astrocyte-specific and 1,459 SCI-related differentially expressed genes (DEGs) were identified. Enrichment analyses highlighted neuroimmune and inflammatory pathways. MR indicated a protective association between elevated monocyte count and reduced SCI risk. Network pharmacology and molecular docking demonstrated that MG targets overlapped with astrocyte DEGs, suggesting high binding affinities and regulatory effects on inflammation and neuron–glia signaling.

Conclusions

MG may promote recovery from SCI by modulating neuroimmune interactions, particularly through astrocyte and monocyte-mediated pathways. The integrative multi-omics strategy supports MG’s translational potential as a novel therapeutic candidate for SCI.

Mechanism of SCI Repair and Neuronal Differentiation Mediated by MG (Created by BioRender).

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic Changes in Astrocytes Following SCI and Their Therapeutic Potential.
Fig. 2: Exploring the Molecular Mechanisms and Therapeutic Potential of Astrocytes in SCI.
Fig. 3: MR Analysis of Monocyte Count and SCI.
Fig. 4: Network Pharmacology Analysis Exploring Key Target Genes of MG.

Data availability

The original contributions presented in the study are included in the article/supplementary materials, further inquiries can be directed to the corresponding authors.

References

  1. Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. IJMS. 2020;21:7533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao C, Bao S-S, Xu M, Rao J-S. Importance of brain alterations in spinal cord injury. Sci Prog. 2021;104:368504211031117. https://doi.org/10.1177/00368504211031117.

    Article  PubMed  Google Scholar 

  3. Mautes AE, Weinzierl MR, Donovan F, Noble LJ. Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther. 2000;80:673–87.

    Article  CAS  PubMed  Google Scholar 

  4. LaPlaca MC, Simon CM, Prado GR, Cullen DK. CNS injury biomechanics and experimental models. Prog Brain Res. 2007;161:13–26.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang N, Yin Y, Xu S-J, Wu Y-P, Chen W-S. Inflammation & apoptosis in spinal cord injury. Indian J Med Res. 2012;135:287–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282. https://doi.org/10.3389/fneur.2019.00282.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation. 2021;18:284. https://doi.org/10.1186/s12974-021-02337-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu D-M, Zheng Z-H, Wang S, Wen X, Han X-R, Wang Y-J, et al. Association between plasma macrophage migration inhibitor factor and deep vein thrombosis in patients with spinal cord injuries. Aging. 2019;11:2447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sánchez-Ventura J, Amo-Aparicio J, Navarro X, Penas C. Correction to: BET protein inhibition regulates cytokine production and promotes neuroprotection after spinal cord injury. J Neuroinflammation. 2022;19:230. https://doi.org/10.1186/s12974-022-02590-z.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang Q, Zhu C, Li X, Shi Y, Zhang Z. CCR2 downregulation attenuates spinal cord injury by suppressing inflammatory monocytes. Synapse. 2020;75:e22191. https://doi.org/10.1002/syn.22191.

    Article  CAS  PubMed  Google Scholar 

  11. Kong F-Q, Zhao S-J, Sun P, Liu H, Jie J, Xu T, et al. Macrophage MSR1 promotes the formation of foamy macrophage and neuronal apoptosis after spinal cord injury. J Neuroinflammation. 2020;17:62. https://doi.org/10.1186/s12974-020-01735-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vaucher J, Keating BJ, Lasserre AM, Gan W, Lyall DM, Ward J, et al. Cannabis use and risk of schizophrenia: a mendelian randomization study. Mol Psychiatry. 2017;23:1287–92.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun Y, Liu Y, Dian Y, Zeng F, Deng G, Lei S. Association of glucagon-like peptide-1 receptor agonists with risk of cancers-evidence from a drug target mendelian randomization and clinical trials. Int J Surg. 2024;110:4688–94.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Elham A, Arken M, Kalimanjan G, Arkin A, Iminjan M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of quercus infectoria galls. J Ethnopharmacol. 2021;273:113592.

    Article  CAS  PubMed  Google Scholar 

  15. Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, et al. Mangifera indica (mango): a promising medicinal plant for breast cancer therapy and understanding its potential mechanisms of action. BCTT. 2021;13:471–503.

    Article  Google Scholar 

  16. Hamed ANE, Abouelela ME, El Zowalaty AE, Badr MM, Abdelkader MSA. Chemical constituents from Carica papaya Linn. leaves as potential cytotoxic, EGFRwt and aromatase (CYP19A) inhibitors; a study supported by molecular docking. RSC Adv. 2022;12:9154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian W, Han X-G, Liu Y-J, Tang G-Q, Liu B, Wang Y-Q, et al. Intrathecal epigallocatechin gallate treatment improves functional recovery after spinal cord injury by upregulating the expression of BDNF and GDNF. Neurochem Res. 2013;38:772–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ahadi S, Zargari M, Khalatbary AR. Assessment of the neuroprotective effects of (-)-epigallocatechin-3-gallate on spinal cord ischemia-reperfusion injury in rats. J Spinal Cord Med. 2019;44:725–32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim SJ, Jin M, Lee E, Moon TC, Quan Z, Yang JH, et al. Effects of methyl gallate on arachidonic acid metabolizing enzymes: Cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch Pharm Res. 2006;29:874–8.

    Article  CAS  PubMed  Google Scholar 

  20. Correa LB, Pádua TA, Seito LN, Costa TEMM, Silva MA, Candéa ALP, et al. Anti-inflammatory effect of methyl gallate on experimental arthritis: inhibition of neutrophil recruitment, production of inflammatory mediators, and activation of macrophages. J Nat Prod. 2016;79:1554–66.

    Article  CAS  PubMed  Google Scholar 

  21. Chae H-S, Kang O-H, Choi J-G, Oh Y-C, Lee Y-S, Brice O-O, et al. Methyl gallate inhibits the production of interleukin-6 and nitric oxide via down-regulation of extracellular-signal regulated protein kinase in RAW 264.7 cells. Am J Chin Med. 2010;38:973–83.

    Article  CAS  PubMed  Google Scholar 

  22. Hsieh T-J, Liu T-Z, Chia Y-C, Chern C-L, Lu F-J, Chuang M, et al. Protective effect of methyl gallate from Toona sinensis (Meliaceae) against hydrogen peroxide-induced oxidative stress and DNA damage in MDCK cells. Food Chem Toxicol. 2004;42:843–50.

    Article  CAS  PubMed  Google Scholar 

  23. Ryu B-I, Kim K-T. Antioxidant activity and protective effect of methyl gallate against t-BHP induced oxidative stress through inhibiting ROS production. Food Sci Biotechnol. 2022;31:1063–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prakashkumar N, Sivamaruthi BS, Chaiyasut C, Suganthy N. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis: an in vitro study. Pharmaceutics. 2021;13:299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao L, Peng Y, Xu W, He P, Li T, Lu X, et al. Progress in stem cell therapy for spinal cord injury. Stem Cells Int. 2020;2020:1–16.

    Google Scholar 

  26. Wei H, Wu X, You Y, Duran RC-D, Zheng Y, Narayanan KL, et al. Systematic analysis of purified astrocytes after SCI unveils Zeb2os function during astrogliosis. Cell Rep. 2021;34:108721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Syková E, Homola A, Mazanec R, Lachmann H, Konrádová ŠL, Kobylka P, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006;15:675–87.

    Article  PubMed  Google Scholar 

  28. Lee H-G, Lee J-H, Flausino LE, Quintana FJ. Neuroinflammation: an astrocyte perspective. Sci Transl Med. 2023;15:eadi7828. https://doi.org/10.1126/scitranslmed.adi7828.

    Article  CAS  PubMed  Google Scholar 

  29. O’Shea TM, Burda JE, Sofroniew MV. Cell biology of spinal cord injury and repair. J Clin Invest. 2017;127:3259–70.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209:378–88.

    Article  CAS  PubMed  Google Scholar 

  31. Milich LM, Ryan CB, Lee JK. The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol. 2019;137:785–97.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Priego N, Valiente M. The potential of astrocytes as immune modulators in brain tumors. Front Immunol. 2019;10:1314. https://doi.org/10.3389/fimmu.2019.01314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang H, Huang Q, Zou L, Wei P, Lu J, Zhang Y. Methyl gallate: Review of pharmacological activity. Pharmacol Res. 2023;194:106849.

    Article  CAS  PubMed  Google Scholar 

  34. Rosa AD. Docking-based analysis and modeling of the activity of bile acids and their synthetic analogues on large conductance Ca2+ activated K channels in smooth muscle cells. Eur Rev. 2021;25:7501–7. https://doi.org/10.26355/eurrev_202112_27449.

    Article  Google Scholar 

  35. Wang Y, Xi W, Zhang X, Bi X, Liu B, Zheng X, et al. CTSB promotes sepsis-induced acute kidney injury through activating mitochondrial apoptosis pathway. Front Immunol. 2023;13:1053754. https://doi.org/10.3389/fimmu.2022.1053754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hook G, Reinheckel T, Ni J, Wu Z, Kindy M, Peters C, et al. Cathepsin B gene knockout improves behavioral deficits and reduces pathology in models of neurologic disorders. Pharmacol Rev. 2022;74:600–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cai Y, Yu Z, Yang X, Luo W, Hu E, Li T, et al. Integrative transcriptomic and network pharmacology analysis reveals the neuroprotective role of BYHWD through enhancing autophagy by inhibiting Ctsb in intracerebral hemorrhage mice. Chin Med. 2023;18:150. https://doi.org/10.1186/s13020-023-00852-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ellman DG, Lund MC, Nissen M, Nielsen PS, Sørensen C, Lester EB, et al. Conditional ablation of myeloid TNF improves functional outcome and decreases lesion size after spinal cord injury in mice. Cells. 2020;9:2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hatch MN, Cushing TR, Carlson GD, Chang EY. Neuropathic pain and SCI: identification and treatment strategies in the 21st century. J Neurol Sci. 2018;384:75–83.

    Article  PubMed  Google Scholar 

  40. Soler D, Moriña D, Kumru H, Vidal J, Navarro X. Transcranial direct current stimulation and visual illusion effect according to sensory phenotypes in patients with spinal cord injury and neuropathic pain. J Pain. 2021;22:86–96.

    Article  PubMed  Google Scholar 

  41. Finnerup NB, Baastrup C. Spinal cord injury pain: mechanisms and management. Curr Pain Headache Rep. 2012;16:207–16.

    Article  PubMed  Google Scholar 

  42. López-Lluva MT, Abellán-Huerta J, Sánchez-Pérez I, Pérez Díaz P, Lozano Ruíz-Poveda F. An unusual entity: woven coronary artery anomaly. J Invasive Cardiol. 2020;32:E73.

    Article  PubMed  Google Scholar 

  43. Singh A, Mora J, Panepinto JA. Identification of patients with hemoglobin SS/Sβ0 thalassemia disease and pain crises within electronic health records. Blood Adv. 2018;2:1172–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. IJMS. 2018;19:4100.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dorstyn D, Mathias J, Denson L. Efficacy of cognitive behavior therapy for the management of psychological outcomes following spinal cord injury a meta-analysis. J Health Psychol. 2010;16:374–91.

    Article  PubMed  Google Scholar 

  46. Mehta S, Orenczuk S, Hansen KT, Aubut J-AL, Hitzig SL, Legassic M, et al. An evidence-based review of the effectiveness of cognitive behavioral therapy for psychosocial issues post-spinal cord injury. Rehabil Psychol. 2011;56:15–25.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Huang G, Lin BL, Hu JH, Qiu FH, Zhang WY, Zhang ZL, et al. Effect of acceptance and commitment therapy on rehabilitation patients with spinal cord injury. Contemp Clin Trials Commun. 2021;24:100778.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang X, Chen J, Liu Y, Wu Y. The effect of acceptance and commitment therapy on psychological nursing of acute cerebral infarction with insomnia, anxiety, and depression. Comput Math Methods Med. 2022;2022:1–8.

    Google Scholar 

  49. Boonstra AM, Schiphorst Preuper HR, Balk GA, Stewart RE. Cut-off points for mild, moderate, and severe pain on the visual analogue scale for pain in patients with chronic musculoskeletal pain. Pain. 2014;155:2545–50.

    Article  PubMed  Google Scholar 

  50. Shafshak TS, Elnemr R. The visual analogue scale versus numerical rating scale in measuring pain severity and predicting disability in low back pain. J Clin Rheumatol. 2020;27:282–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Contributions

X.Z., M.B., and H.L. contributed to the study design and data analysis. L.L. and Q.L. supervised the project and provided critical revisions to the manuscript. X.Z., L.L., and Q.L. were responsible for manuscript writing and final approval. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Lili Lian or Qiuru Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical statement

This study does not involve animal or human clinical ethics. Ethical approval is not required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Bai, M., Li, H. et al. Targeting astrocyte-monocyte-neuron crosstalk in spinal cord injury: therapeutic insights from methyl gallate. Spinal Cord (2025). https://doi.org/10.1038/s41393-025-01127-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41393-025-01127-4

Search

Quick links