Fig. 2: Distribution, composition, and expression of genes involved in sulfoquinovose degradation by Eubacterium rectale and DHPS degradation by Bilophila wadsworthia.

A Structure of the SQ-utilization gene cluster for SQ utilization via the SFT pathway in human gut bacteria and the E. rectale SQ_MAG_41 recovered from the microcosms. Genes depicted in white have no predicted function. The four core genes of the SFT pathway (in green shades) are present in 23 species-level MAG clusters (of 4,930 total clusters; each >95% MAG ANI) that are Lachnospiraceae and Ruminococcaceae family members. MAG clusters are ordered based on the phylogeny of representative genomes. Numbers in parentheses denote MAG species-cluster IDs [45]. SQ_MAG_41 is a member of the E. rectale ATCC 33656 species cluster. SFT gene cassette frequency across each species-level MAG cluster with point labels indicating the number of MAGs containing the SQ-gene cassette with respect to the total number of MAGs in each species-level cluster. B Expression of pathways for SQ utilization by E. rectale (transcripts mapped to E. rectale ATCC 36656) (left) and DHPS utilization and sulfite respiration by B. wadsworthia (transcripts mapped to B. wadsworthia 3.1.6) (right) in the metatranscriptomes of triplicate (n = 3) fecal microcosms at 6, 20, and 52 h after amendment with 10 mM SQ. Vertical lines connect non-overlapping replicate data points and asterisks indicate significant difference in expression level. DUF domain of unknown function, SF 6-deoxy-6-sulfofructose, SQ sulfoquinovose, DHPS 2,3-dihydroxypropane-1-sulfonate, HSA 2-oxo-3-hydroxy-propane-1-sulfonate, SLA 3-sulfolactaldehyde, SL 3-sulfolactate. C Structure of the DHPS utilization gene cluster in B. wadsworthia 3.1.6 and its inducibly expressed proteins (bar graph) during growth with DHPS as electron acceptor (numbers refer to RefSeq locus tag numbers; prefix HMPREF0179_RS) (Fig. S5C shows a comparison to growth with taurine, isethionate, and 3-sulfolactate as electron acceptors). Metabolite analysis (line graph) of cell-free extracts of DHPS-grown cells indicated cleavage of DHPS into sulfite and hydroxyacetone, if the reaction was performed under strictly anoxic conditions [28]; representative results (n = 5). D Presence/absence of DHPS-utilization pathway genes in B. wadsworthia genomes and other selected dsrABC-encoding human gut Desulfovibrionaceae.