Abstract
Predicting the response of ocean primary production to climate warming is a major challenge. One key control of primary production is the microbial loop driven by heterotrophic bacteria, yet how warming alters the microbial loop and its function is poorly understood. Here we develop an eco-evolutionary model to predict the physiological response and adaptation through selection of bacterial populations in the microbial loop and how this will impact ecosystem function such as primary production. We find that the ecophysiological response of primary production to warming is driven by a decrease in regenerated production which depends on nutrient availability. In nutrient-poor environments, the loss of regenerated production to warming is due to decreasing microbial loop activity. However, this ecophysiological response can be opposed or even reversed by bacterial adaptation through selection, especially in cold environments: heterotrophic bacteria with lower bacterial growth efficiency are selected, which strengthens the “link” behavior of the microbial loop, increasing both new and regenerated production. In cold and rich environments such as the Arctic Ocean, the effect of bacterial adaptation on primary production exceeds the ecophysiological response. Accounting for bacterial adaptation through selection is thus critically needed to improve models and projections of the ocean primary production in a warming world.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9.
Riebesell U, Körtzinger A, Oschlies A. Sensitivities of marine carbon fluxes to ocean change. Proc Natl Acad Sci USA. 2009;106:20602–9.
Hutchins DA, Fu F. Microorganisms and ocean global change. Nat Microbiol. 2017;2:1–11.
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.
Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences. 2013;10:6225–45.
Oschlies A, Brandt P, Stramma L, Schmidtko S. Drivers and mechanisms of ocean deoxygenation. Nat Geosci. 2018;11:467–73.
Cazenave A, Llovel W. Contemporary sea level rise. Ann Rev Mar Sci. 2010;2:145–73.
Frölicher TL, Ramseyer L, Raible CC, Rodgers KB, Dunne J. Potential predictability of marine ecosystem drivers. Biogeosciences. 2020;17:2061–83.
Taucher J, Oschlies A. Can we predict the direction of marine primary production change under global warming? Geophys Res Lett. 2011;38:L02603.
Laufkötter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O, Bopp L, et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences. 2015;12:6955–84.
Azam F, Fenchel T, Field JG, Gray J, Meyer-Reil L, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983:257–63.
Fenchel T. The microbial loop–25 years later. J Exp Mar Biol Ecol. 2008;366:99–103.
Kirchman DL, Morán XAG, Ducklow H. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat Rev Microbiol. 2009;7:451–9.
Aumont O, Éthé C, Tagliabue A, Bopp L, Gehlen M. PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies. Geosci Model Dev Discuss. 2015;8:2465–513.
Vichi M, Masina S. Skill assessment of the PELAGOS global ocean biogeochemistry model over the period 1980–2000. Biogeosciences. 2009;6:2333–53.
Hasumi H, Nagata T. Modeling the global cycle of marine dissolved organic matter and its influence on marine productivity. Ecol Model. 2014;288:9–24.
Laufkötter C, Vogt M, Gruber N, Aumont O, Bopp L, Doney SC, et al. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences. 2016;13:4023–47.
Monroe JG, Markman DW, Beck WS, Felton AJ, Vahsen ML, Pressler Y. Ecoevolutionary dynamics of carbon cycling in the anthropocene. Trends Ecol Evol. 2018;33:213–25.
Bennett AF, Dao KM, Lenski RE. Rapid evolution in response to high-temperature selection. Nature. 1990;346:79–81.
Garud NR, Good BH, Hallatschek O, Pollard KS. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 2019;17:e3000102.
Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM, Groussin M, et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe. 2019;25:656–67.
Pomeroy LR, Williams PJleB, Azam F, Hobbie JE. The microbial loop. J Oceanogr. 2007;20:28–33.
Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine NM. Microbial evolutionary strategies in a dynamic ocean. Proc Natl Acad Sci USA. 2020;117:5943–8.
Malik AA, Martiny JB, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.
Saifuddin M, Bhatnagar JM, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:1–10.
Muscarella ME, Howey XM, Lennon JT. Trait‐based approach to bacterial growth efficiency. Environ Microbiol. 2020;22:3494–3504.
Roller BR, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7.
Sarmiento JL, Gruber N. Ocean biogeochemical dynamics. Princeton University Press, 2006.
Bendtsen J, Lundsgaard C, Middelboe M, Archer D. Influence of bacterial uptake on deep-ocean dissolved organic carbon. Glob Biogeocehm Cycles. 2002;16:74–1.
Chen B, Landry MR, Huang B, Liu H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol Oceanogr. 2012;57:519–26.
Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol. 2014;5:251.
Kiørboe T, Visser A, Andersen KH. A trait-based approach to ocean ecology. ICES Int J Mar Sci. 2018;75:1849–63.
Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111:1169–94.
Polz MF, Cordero OX. Bacterial evolution: genomics of metabolic trade-offs. Nat Microbiol. 2016;1:1–2.
Carlson CA, Del Giorgio PA, Herndl GJ. Microbes and the dissipation of energy and respiration: from cells to ecosystems. J Oceanogr. 2007;20:89–100.
Arnosti C. Patterns of microbially driven carbon cycling in the ocean: links between extracellular enzymes and microbial communities. Adv Oceanogr. 2014;2014:706082.
Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292:504–7.
Button D. Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl Environ Microbiol. 1991;57:2033–8.
Metz JA, Nisbet RM, Geritz SA. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evol. 1992;7:198–202.
Geritz SA, Metz JA, Kisdi E, Meszéna G. Dynamics of adaptation and evolutionary´ branching. Phys Rev Lett. 1997;78:2024.
Abs E, Ferrière R. Modeling microbial dynamics and heterotrophic soil respiration: effect of climate change. Biogeochemical cycles: ecological drivers and environmental impact. 2020:103–29.
Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015;6:615.
Hansell DA, Carlson CA. Biogeochemistry of marine dissolved organic matter. Academic Press, 2014.
Urban MC, De Meester L, Vellend M, Stoks R, Vanoverbeke J. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evol Appl. 2012;5:154–67.
Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N. Eco-evolutionary responses of biodiversity to climate change. Nat Clim Change. 2012;2:747–51.
Sarmento H, Montoya JM, Vázquez-Domínguez E, Vaqué D, Gasol JM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc Long B Biol Sci. 2010;365:2137–49.
Walther S, Voigt M, Thum T, Gonsamo A, Zhang Y, Köhler P, et al. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob Change Biol. 2016;22:2979–96.
Williams RG, Follows MJ. Ocean dynamics and the carbon cycle: Principles and mechanisms. Cambridge University Press, 2011.
Lewis K, Van Dijken G, Arrigo KR. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science. 2020;369:198–202.
Ward B, Collins S, Dutkiewicz S, Gibbs S, Bown P, Ridgwell A, et al. Considering the role of adaptive evolution in models of the ocean and climate system. J Adv Model Earth Syst. 2019;11:3343–61.
Vázquez-Domínguez E, Vaque D, Gasol JM. Ocean warming enhances respiration and carbon demand of coastal microbial plankton. Glob Change Biol. 2007;13:1327–34.
López-Urrutia A, Morán XAG. Resource limitation of bacterial production distorts´ the temperature dependence of oceanic carbon cycling. Ecology. 2007;88:817–22.
Parker GA, Smith JM. Optimality theory in evolutionary biology. Nature. 1990;348:27–33.
Hammerstein P. Darwinian adaptation, population genetics and the streetcar theory of evolution. J Math Biol. 1996;34:511–32.
Eshel I, Feldman MW, Bergman A. Long-term evolution, short-term evolution, and population genetic theory. J Theor Biol. 1998;191:391–6.
Hagerty SB, Allison SD, Schimel JP. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry. 2018;140:269–83.
Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA. 2002;99:15112–7.
Marx CJ. Can you sequence ecology? Metagenomics of adaptive diversification. PLoS Biol. 2013;11:e1001487.
O’Brien S, Hodgson DJ, Buckling A. The interplay between microevolution and community structure in microbial populations. Curr Opin Biotechnol. 2013;24:821–5.
Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:1–8.
Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493:45–50.
Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:e59–9.
Gregory AC, Gerhardt K, Zhong ZP, Bolduc B, Temperton B, Konstantinidis KT, et al. MetaPop: a pipeline for macro-and micro-diversity analyses and visualization of microbial and viral metagenome-derived populations. bioRxiv 2020. https://doi.org/10.1101/2020.11.01.363960.
Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC, Moran MA, et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science. 2017;358:1149–1154.
Scheinin M, Riebesell U, Rynearson TA, Lohbeck KT, Collins S. Experimental evolution gone wild. J R Soc Interface. 2015;12:20150056.
Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8.
Grimaud GM, Le Guennec V, Ayata SD, Mairet F, Sciandra A, Bernard O. Modelling the effect of temperature on phytoplankton growth across the global ocean. IFACPapersOnLine. 2015;48:228–33.
Sauterey B, Ward B, Rault J, Bowler C, Claessen D. The implications of ecoevolutionary processes for the emergence of marine plankton community biogeography. Am Nat. 2017;190:116–30.
Beckmann A, Schaum CE, Hense I. Phytoplankton adaptation in ecosystem models. J Theor Biol. 2019;468:60–71.
Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience. 1999;49:781–8.
Danovaro R, Corinaldesi C, Dell’Anno A, Fuhrman JA, Middelburg JJ, Noble RT, et al. Marine viruses and global climate change. FEMS Microbiol Rev. 2011;35:993–1034.
Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.
Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML, Buchan A, et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 2015;9:1352–64.
Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro-and microdiversity from pole to pole. Cell. 2019;177:1109–23.
Acknowledgements
We thank Olivier Aumont, Laurent Bopp, and Boris Sauterey for discussion and comments.
Funding
This work is supported by France Investissements d’Avenir program (ANR-10-LABX-54 MemoLife, ANR-10-IDEX-0001-02 PSL) and PSL - University of Arizona Mobility Program. PC is supported by a doctoral fellowship from the French IPEF program. RF acknowledges support from the U.S. National Science Foundation, Dimensions of Biodiversity (DEB-1831493), Biology Integration Institute-Implementation (DBI-2022070), and National Research Traineeship (DGE-2022055) programs; and from the United States National Aeronautics and Space Administration, Interdisciplinary Consortium for Astrobiology Research program.
Author information
Authors and Affiliations
Contributions
RF conceived the study. All authors developed the model. PC performed the analysis. All authors wrote the first version of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Cherabier, P., Ferrière, R. Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production. ISME J 16, 1130–1139 (2022). https://doi.org/10.1038/s41396-021-01166-8
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41396-021-01166-8
This article is cited by
-
A control theory framework and in situ experimental platform for informing restoration of coral reefs
Nature Ecology & Evolution (2025)
-
Cosmopolitan marine bacteria facilitate a vast phytoplankton-derived sulfonate-based carbon flow through sulfoquinovosidases
Nature Communications (2025)


