Table 2 Metrics of prediction performance.
Prediction model metrics | ||||
|---|---|---|---|---|
2A: Models trained with PGRN-AMPS escitalopram, PGRN-AMPS citalopram, and CO-MED escitalopram + placebo patients. | ||||
Model Set 1 (Metabolomic) | Model Set 2 (Multi-omics) | |||
XGBoost | Penalized regression | XGBoost | Penalized regression | |
Testing-set metrics | ||||
AUC | 0.76 | 0.85 | 0.83 | 0.86 |
Accuracy | 0.727 | 0.766 | 0.761 | 0.775 |
NIR | 0.62 | 0.62 | 0.63 | 0.63 |
p-Value | 0.053 | 0.0045 | 0.017 | 0.0067 |
Sensitivity | 0.75 | 0.69 | 0.69 | 0.71 |
Specificity | 0.69 | 0.90 | 0.88 | 0.88 |
Training-set metrics (in cross-validation) | ||||
AUC | 0.69 | 0.69 | 0.68 | 0.72 |
Accuracy | 0.64 | 0.66 | 0.67 | 0.65 |
NIR | 0.68 | 0.68 | 0.69 | 0.69 |
2B: Models trained with PGRN-AMPS escitalopram and PGRN-AMPS citalopram patients. | ||||
Testing-set metrics | ||||
AUC | 0.75 | 0.84 | 0.74 | 0.86 |
Accuracy | 0.753 | 0.753 | 0.732 | 0.775 |
p-Value | 0.026 | 0.026 | 0.085 | 0.0067 |
Sensitivity | 0.65 | 0.73 | 0.80 | 0.71 |
Specificity | 0.93 | 0.79 | 0.62 | 0.88 |
Training-set metrics (in cross-validation) | ||||
AUC | 0.68 | 0.68 | 0.72 | 0.72 |
Accuracy | 0.64 | 0.65 | 0.67 | 0.68 |
NIR | 0.69 | 0.69 | 0.70 | 0.70 |