Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Translational Psychiatry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. translational psychiatry
  3. articles
  4. article
The relationship between regular substance use and cost comparisons in stable and volatile learning contexts
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

The relationship between regular substance use and cost comparisons in stable and volatile learning contexts

  • Sonia G. RuizĀ  ORCID: orcid.org/0000-0002-3681-946X1,
  • Samuel Paskewitz1 &
  • Arielle Baskin-SommersĀ  ORCID: orcid.org/0000-0001-6773-05081Ā 

Translational Psychiatry , ArticleĀ number:Ā  (2026) Cite this article

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Addiction
  • Human behaviour

Abstract

Insensitivity to costs during cost-benefit decision-making consistently has been related to substance use severity. However, little work has manipulated cost information to examine how people evaluate and compare multiple costs. Further, no work has examined how the consideration of cost information varies across different contexts. We administered a new loss-frame variant of a probabilistic learning task in a diverse community sample enriched for substance use (N = 137). Individuals with more years of regular substance use tended not to repeat choices after they avoided losses, choosing similarly regardless of whether they had avoided or incurred a loss. Computational modeling parameters indicated that they were more inconsistent in their use of expected values to guide choice. These results contribute to our conceptualization of substance use severity by suggesting that inconsistency in using cost information, rather than insensitivity to costs, may inform choices to continue using substances despite incurring negative consequences.

Similar content being viewed by others

The pathways between abstinence self-efficacy, perceived social support and substance use craving

Article Open access 04 June 2025

Predicting substance use behaviors with machine learning using small sets of judgment and contextual variables

Article Open access 27 January 2026

A contextualized reinforcer pathology approach to addiction

Article 21 March 2023

Code availability

All data and code are available at https://osf.io/4e7nf/.

References

  1. McNally GP, Jean-Richard-dit-Bressel P, Millan EZ, Lawrence AJ. Pathways to the persistence of drug use despite its adverse consequences. Mol Psychiatry. 2023;28:2228–37. https://doi.org/10.1038/s41380-023-02040-z.

    Google ScholarĀ 

  2. Association, AP. in Diagnostic and statistical manual of mental disorders (2013).

  3. Dickson-Gomez J, McAuliffe T, Quinn K. The effects of housing status, stability and the social contexts of housing on drug and sexual risk behaviors. AIDS Behav. 2017;21:2079–92. https://doi.org/10.1007/s10461-017-1738-1.

    Google ScholarĀ 

  4. Pitman SA, Pasch KE, Poulos NS, Velazquez CE. Food insecurity and substance use among young adults in the United States. Prev Med. 2024;189:108148. https://doi.org/10.1016/j.ypmed.2024.108148.

    Google ScholarĀ 

  5. Richardson L, Laing A, Choi J, Nosova E, Milloy MJ, Marshall BDL, et al. Effect of alternative income assistance schedules on drug use and drug-related harm: a randomised controlled trial. Lancet Public Health. 2021;6:e324–e334. https://doi.org/10.1016/S2468-2667(21)00023-2.

    Google ScholarĀ 

  6. Joudrey PJ, Khan MR, Wang EA, Scheidell JD, Edelman EJ, McInnes DK, et al. A conceptual model for understanding post-release opioid-related overdose risk. Addict Sci Clin Pract. 2019;14:17. https://doi.org/10.1186/s13722-019-0145-5.

    Google ScholarĀ 

  7. Ingram I, Kelly PJ, Deane FP, Baker AL, Goh MCW, Raftery DK, et al. Loneliness among people with substance use problems: A narrative systematic review. Drug Alcohol Rev. 2020;39:447–83. https://doi.org/10.1111/dar.13064.

    Google ScholarĀ 

  8. Gossop M, Stewart D, Browne N, Marsden J. Factors associated with abstinence, lapse or relapse to heroin use after residential treatment: protective effect of coping responses. Addiction. 2002;97:1259–67. https://doi.org/10.1046/j.1360-0443.2002.00227.x.

  9. Dingle, GA, Cruwys, T, Frings, D Social identities as pathways into and out of addiction. Front Psychol Volume 6 - 2015 (2015). https://doi.org/10.3389/fpsyg.2015.01795

  10. Liebrenz M, Gehring M-T, Buadze A, Caflisch C. High-dose benzodiazepine dependence: a qualitative study of patients’ perception on cessation and withdrawal. BMC Psychiatry. 2015;15:116. https://doi.org/10.1186/s12888-015-0493-y.

    Google ScholarĀ 

  11. Bartram A, Eliott J, Crabb S. Why can’t I just not drink?’ A qualitative study of adults’ social experiences of stopping or reducing alcohol consumption. Drug Alcohol Rev. 2017;36:449–55. https://doi.org/10.1111/dar.12461.

    Google ScholarĀ 

  12. Herrnstein RJ, Prelec D. Melioration. In: Loewenstein G, Elster J, editors. Choice over time. New York: Russell Sage Foundation; 1992. 235–263.

  13. Rachlin H. Four teleological theories of addiction. Psychon Bull Rev. 1997;4:462–73. https://doi.org/10.3758/BF03214335.

    Google ScholarĀ 

  14. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18:247–91. https://doi.org/10.1016/0165-0173(93)90013-p.

    Google ScholarĀ 

  15. Heyman GM. Resolving the contradictions of addiction. Behav Brain Sci. 1996;19:561–74. https://doi.org/10.1017/S0140525X00042990.

    Google ScholarĀ 

  16. Miller M, Kiverstein J, Rietveld E. Embodying addiction: A predictive processing account. Brain Cogn. 2020;138:105495. https://doi.org/10.1016/j.bandc.2019.105495.

    Google ScholarĀ 

  17. Bechara A. Risky business: Emotion, decision-making, and addiction. J Gambl Stud. 2003;19:23–51. https://doi.org/10.1023/A:1021223113233.

    Google ScholarĀ 

  18. Chen S, Yang P, Chen T, Su H, Jiang H, Zhao M. Risky decision-making in individuals with substance use disorder: A meta-analysis and meta-regression review. Psychopharmacology (Berl). 2020;237:1893–908. https://doi.org/10.1007/s00213-020-05506-y.

    Google ScholarĀ 

  19. MacKillop J, Amlung MT, Few LR, Ray LA, Sweet LH, Munafò MR. Delayed reward discounting and addictive behavior: a meta-analysis. Psychopharmacology (Berl). 2011;216:305–21. https://doi.org/10.1007/s00213-011-2229-0.

  20. Stuppy-Sullivan AM, Buckholtz JW, Baskin-Sommers A. Aberrant cost–benefit integration during effort-based decision making relates to severity of substance use disorders. Clin Psychol Sci. 2019;8:155–68. https://doi.org/10.1177/2167702619868155.

  21. Poulton A, Hester R. Transition to substance use disorders: impulsivity for reward and learning from reward. Soc Cogn Affect Neurosci. 2020;15:1182–91. https://doi.org/10.1093/scan/nsz077.

    Google ScholarĀ 

  22. Hogarth L, Field M. Relative expected value of drugs versus competing rewards underpins vulnerability to and recovery from addiction. Behav Brain Res. 2020;394:112815. https://doi.org/10.1016/j.bbr.2020.112815.

    Google ScholarĀ 

  23. Smith R, Schwartenbeck P, Stewart JL, Kuplicki R, Ekhtiari H, Paulus MP. Imprecise action selection in substance use disorder: Evidence for active learning impairments when solving the explore-exploit dilemma. Drug Alcohol Depend. 2020;215:108208. https://doi.org/10.1016/j.drugalcdep.2020.108208.

    Google ScholarĀ 

  24. Alexander WH, Fukunaga R, Finn P, Brown JW. Reward salience and risk aversion underlie differential ACC activity in substance dependence. NeuroImage: Clinical. 2015;8:59–71. https://doi.org/10.1016/j.nicl.2015.02.025.

    Google ScholarĀ 

  25. Reynolds B, Richards JB, Horn K, Karraker K. Delay discounting and probability discounting as related to cigarette smoking status in adults. Behav Processes. 2004;65:35–42. https://doi.org/10.1016/s0376-6357(03)00109-8.

    Google ScholarĀ 

  26. Garami J, Moustafa AA. Probability discounting of monetary gains and losses in opioid-dependent adults. Behav Brain Res. 2019;364:334–9. https://doi.org/10.1016/j.bbr.2019.02.017.

    Google ScholarĀ 

  27. Ersche KD, Roiser JP, Abbott S, Craig KJ, Müller U, Suckling J, et al. Response perseveration in stimulant dependence is associated with striatal dysfunction and can be ameliorated by a D2/3 receptor agonist. Biol Psychiat. 2011;70:754–62. https://doi.org/10.1016/j.biopsych.2011.06.033.

  28. Reiter A Out of control behaviors? Investigating mechanisms of behavioral control in alcohol addiction, binge eating disorder, and associated risk factors. Leipzig, Germany: Max Planck Institute for Human Cognitive and Brain Sciences; 2016.

    Google ScholarĀ 

  29. White SF, Tyler P, Botkin ML, Erway AK, Thornton LC, Kolli V, et al. Youth with substance abuse histories exhibit dysfunctional representation of expected value during a passive avoidance task. Psychiatry Res: Neuroimaging. 2016;257:17–24. https://doi.org/10.1016/j.pscychresns.2016.08.010.

  30. Smith R, Taylor S, Stewart JL, Guinjoan SM, Ironside M, Kirlic N, et al. Slower learning rates from negative outcomes in substance use disorder over a 1-year period and their potential predictive utility. Comput Psychiatr. 2022;6:117. https://doi.org/10.5334/cpsy.85.

  31. KovĆ”cs I, Richman MJ, Janka Z, Maraz A, Andó B. Decision making measured by the Iowa Gambling Task in alcohol use disorder and gambling disorder: a systematic review and meta-analysis. Drug Alcohol Depend. 2017;181:152–61. https://doi.org/10.1016/j.drugalcdep.2017.09.023.

    Google ScholarĀ 

  32. Wittwer A, Hulka LM, Heinimann HR, Vonmoos M, Quednow BB. Risky decisions in a lottery task are associated with an increase of cocaine use. Front Psychol. 2016;7:640. https://doi.org/10.3389/fpsyg.2016.00640.

    Google ScholarĀ 

  33. Kanen JW, Ersche KD, Fineberg NA, Robbins TW, Cardinal RN. Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents. Psychopharmacology (Berl). 2019;236:2337–58. https://doi.org/10.1007/s00213-019-05325-w.

    Google ScholarĀ 

  34. Ersche KD, Roiser JP, Robbins TW, Sahakian BJ. Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology (Berl). 2008;197:421–31. https://doi.org/10.1007/s00213-007-1051-1.

    Google ScholarĀ 

  35. Findling C, Skvortsova V, Dromnelle R, Palminteri S, Wyart V. Computational noise in reward-guided learning drives behavioral variability in volatile environments. Nat Neurosci. 2019;22:2066–77. https://doi.org/10.1038/s41593-019-0518-9.

    Google ScholarĀ 

  36. Acuff SF, Kane L, Stewart ZJ, Riddle J, Daughters SB. Substance use disorder severity is associated with sensitivity to effort-related decision-making constraints. Psychopharmacology (Berl). 2025;242:1351–62. https://doi.org/10.1007/s00213-024-06732-4.

    Google ScholarĀ 

  37. Aharonovich E, Scodes J, Wall MM, Hasin DS. The relationship of frequency of cocaine use to substance and psychiatric disorders in the U.S. general population. Drug Alcohol Depend. 2021;227:108933. https://doi.org/10.1016/j.drugalcdep.2021.108933.

    Google ScholarĀ 

  38. Kawa AB, Allain F, Robinson TE, Samaha A-N. The transition to cocaine addiction: the importance of pharmacokinetics for preclinical models. Psychopharmacology (Berl). 2019;236:1145–57. https://doi.org/10.1007/s00213-019-5164-0.

    Google ScholarĀ 

  39. (FDA), U. F. a. D. A. D. G. (ed FDA) (Silver Spring, MD, 2018).

  40. Volkow ND, Compton WM, Blanco C, Einstein EB, Han B. Associations of cannabis use, use frequency, and cannabis use disorder with violent behavior among young adults in the United States. Int J Drug Policy. 2024;128:104431. https://doi.org/10.1016/j.drugpo.2024.104431.

    Google ScholarĀ 

  41. Kiluk BD, Carroll KM, Duhig A, Falk DE, Kampman K, Lai S, et al. Measures of outcome for stimulant trials: ACTTION recommendations and research agenda. Drug Alcohol Depend. 2016;158:1–7. https://doi.org/10.1016/j.drugalcdep.2015.11.004.

  42. Anderson NE, Maurer JM, Stephenson D, Harenski K, Caldwell M, Van Rybroek G, et al. Striatal brain volume linked to severity of substance use in high-risk incarcerated youth. Dev Psychopathol. 2025;37:966–75. https://doi.org/10.1017/S0954579424000804.

    Google ScholarĀ 

  43. Edwards BG, Maurer JM, Harenski CL, Kiehl KA. Psychopathy, borderline personality disorder, and substance use in incarcerated females. Crim Justice Behav. 2021;48:1732–48. https://doi.org/10.1177/00938548211033336.

    Google ScholarĀ 

  44. McLellan AT, Luborsky L, Cacciola J, Griffith J, Evans F, Barr HL, et al. New data from the Addiction Severity Index. Reliability and validity in three centers. J Nerv Ment Dis. 1985;173:412–23. https://doi.org/10.1097/00005053-198507000-00005.

    Google ScholarĀ 

  45. Cope LM, Vincent GM, Jobelius JL, Nyalakanti PK, Calhoun VD, Kiehl KA. Psychopathic traits modulate brain responses to drug cues in incarcerated offenders. Front Hum Neurosci. 2014;8:87. https://doi.org/10.3389/fnhum.2014.00087.

    Google ScholarĀ 

  46. Behrens TE, Woolrich MW, Walton ME, Rushworth MF. Learning the value of information in an uncertain world. Nat Neurosci. 2007;10:1214–21. https://doi.org/10.1038/nn1954.

    Google ScholarĀ 

  47. Blain B, Rutledge RB. Momentary subjective well-being depends on learning and not reward. eLife. 2020;9:e57977. https://doi.org/10.7554/eLife.57977.

    Google ScholarĀ 

  48. Gagne C, Zika O, Dayan P, Bishop SJ. Impaired adaptation of learning to contingency volatility in internalizing psychopathology. eLife. 2020;9:e61387. https://doi.org/10.7554/eLife.61387.

    Google ScholarĀ 

  49. Doyle WS, Huskinson SL. Environmental uncertainty and substance use disorders: A behavior analytic perspective. Policy Insights Behav Brain Sci. 2023;10:96–103. https://doi.org/10.1177/23727322231152451.

    Google ScholarĀ 

  50. Browning M, Behrens TE, Jocham G, O’Reilly JX, Bishop SJ. Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat Neurosci. 2015;18:590–6. https://doi.org/10.1038/nn.3961.

    Google ScholarĀ 

  51. Deserno L, Boehme R, Mathys C, Katthagen T, Kaminski J, Stephan KE, et al. Volatility estimates increase choice switching and relate to prefrontal activity in schizophrenia. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2020;5:173–83. https://doi.org/10.1016/j.bpsc.2019.10.007.

  52. Kreis I, Zhang L, Mittner M, Syla L, Lamm C, Pfuhl G. Aberrant uncertainty processing is linked to psychotic-like experiences, autistic traits, and is reflected in pupil dilation during probabilistic learning. Cogn Affect Behav Neurosci. 2023;23:905–19. https://doi.org/10.3758/s13415-023-01088-2.

  53. Fromm S, Katthagen T, Deserno L, Heinz A, Kaminski J, Schlagenhauf F. Belief updating in subclinical and clinical delusions. Schizophr Bul Open. 2023;4:sgac074. https://doi.org/10.1093/schizbullopen/sgac074.

  54. Olvera Astivia OL, Gadermann A, Guhn M. The relationship between statistical power and predictor distribution in multilevel logistic regression: a simulation-based approach. BMC Med Res Methodol. 2019;19:97. https://doi.org/10.1186/s12874-019-0742-8.

    Google ScholarĀ 

  55. Peirce J, Gray JR, Simpson S, MacAskill M, Hochenberger R, Sogo H, et al. PsychoPy2: Experiments in behavior made easy. Behav Res Methods. 2019;51:195–203. https://doi.org/10.3758/s13428-018-01193-y.

    Google ScholarĀ 

  56. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2022).

  57. Kuznetsova A, Brockhoff P, Christensen R. lmerTest Package: Tests in linear mixed effects models. J Stat Softw. 2017;82:1–26. https://doi.org/10.18637/jss.v082.i13.

    Google ScholarĀ 

  58. Bates D, MƤchler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67:1–48. https://doi.org/10.18637/jss.v067.i01.

    Google ScholarĀ 

  59. interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions v. R package version 1.1.0 (2019).

  60. Atanassova DV, Mathys C, Diaconescu AO, Madariaga VI, Oosterman JM, Brazil IA. Diminished pain sensitivity mediates the relationship between psychopathic traits and reduced learning from pain. Commun Psychol. 2024;2:86. https://doi.org/10.1038/s44271-024-00133-1.

    Google ScholarĀ 

  61. Cassotti M, HoudĆ© O, Moutier S. Developmental changes of win-stay and loss-shift strategies in decision making. Child Neuropsychol. 2011;17:400–11. https://doi.org/10.1080/09297049.2010.547463.

    Google ScholarĀ 

  62. VanderWeele TJ, Shpitser I. A new criterion for confounder selection. Biometrics. 2011;67:1406–13. https://doi.org/10.1111/j.1541-0420.2011.01619.x.

    Google ScholarĀ 

  63. Preacher KJ, Curran PJ, Bauer DJ. Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. J Educ Behav Stat. 2006;31:437–48. https://doi.org/10.3102/10769986031004437.

  64. Buades-Rotger M, Smeijers D, Gallardo-Pujol D, KrƤmer UM, Brazil IA. Aggressive and psychopathic traits are linked to the acquisition of stable but imprecise hostile expectations. Transl Psychiatry. 2023;13:197. https://doi.org/10.1038/s41398-023-02497-0.

  65. Rescorla RA, Wagner AR. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF, editors. Classical conditioning II: Current research and theory. New York: Appleton-Century-Crofts; 1972. 64–99.

  66. Sutton RS. Gain adaptation beats least squares? In: Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems. 1992. 161–166.

  67. Mathys CD, Lomakina EI, Daunizeau J, Iglesias S, Brodersen KH, Friston KJ, et al. Uncertainty in perception and the Hierarchical Gaussian Filter. Front Hum Neurosci. 2014;8:825. https://doi.org/10.3389/fnhum.2014.00825.

    Google ScholarĀ 

  68. Mathys C, Daunizeau J, Friston KJ, Stephan KE. A Bayesian foundation for individual learning under uncertainty. Front Hum Neurosci. 2011;5:39. https://doi.org/10.3389/fnhum.2011.00039.

  69. FrƤssle S, Aponte EA, Bollmann S, Brodersen KH, Do CT, Harrison OK, et al. TAPAS: an open-source software package for translational neuromodeling and computational psychiatry. Front Psychiatry. 2021;12:680811. https://doi.org/10.3389/fpsyt.2021.680811.

  70. The MathWorks, Inc. MATLAB (version 9.12.0, R2022a). Natick, MA, USA: The MathWorks, Inc.; 2022. Available from: https://www.mathworks.com.

  71. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. Bayesian model selection for group studies. Neuroimage. 2009;46:1004–17. https://doi.org/10.1016/j.neuroimage.2009.03.025.

  72. Myers CE, Sheynin J, Balsdon T, Luzardo A, Beck KD, Hogarth L, et al. Probabilistic reward- and punishment-based learning in opioid addiction: Experimental and computational data. Behav Brain Res. 2016;296:240–8. https://doi.org/10.1016/j.bbr.2015.09.018.

    Google ScholarĀ 

  73. Reiter AM, Deserno L, Kallert T, Heinze H-J, Heinz A, Schlagenhauf F. Behavioral and neural signatures of reduced updating of alternative options in alcohol-dependent patients during flexible decision-making. J Neurosci. 2016;36:10935–48. https://doi.org/10.1523/JNEUROSCI.4322-15.2016.

  74. Robinson AH, Chong TT-J, Verdejo-Garcia A. Computational models of exploration and exploitation characterise onset and efficacy of treatment in methamphetamine use disorder. Addict Biol. 2022;27:e13172. https://doi.org/10.1111/adb.13172.

    Google ScholarĀ 

  75. Bağci, B, Düsmez, S, Zorlu, N, Bahtiyar, G, Isikli, S, Bayrakci, A et al. Computational analysis of probabilistic reversal learning deficits in male subjects with alcohol use disorder. Front Psychiatry Volume 13 - 2022 (2022). https://doi.org/10.3389/fpsyt.2022.960238.

  76. Patzelt EH, Kurth-Nelson Z, Lim KO, MacDonald AW. Excessive state switching underlies reversal learning deficits in cocaine users. Drug Alcohol Depend. 2014;134:211–7. https://doi.org/10.1016/j.drugalcdep.2013.09.029.

    Google ScholarĀ 

  77. Laureiro-Martinez D, Brusoni S, Tata A, Zollo M. The Manager’s notepad: Working memory, exploration, and performance. J Manag Stud. 2019;56:1655–82. https://doi.org/10.1111/joms.12528.

    Google ScholarĀ 

  78. Castellanos-Ryan, N. & Conrod, P. Cognition and addiction. In Cognition and Addiction (ed. Verdejo-Garcia, A.) 91–102 (Academic Press, 2020).

  79. Ramey T, Regier PS. Cognitive impairment in substance use disorders. CNS Spectr. 2019;24:102–13. https://doi.org/10.1017/s1092852918001426.

    Google ScholarĀ 

  80. Kim-Spoon J, Kahn RE, Lauharatanahirun N, Deater-Deckard K, Bickel WK, Chiu PH, et al. Executive functioning and substance use in adolescence: Neurobiological and behavioral perspectives. Neuropsychologia. 2017;100:79–92. https://doi.org/10.1016/j.neuropsychologia.2017.04.020.

  81. Pulcu E, Browning M. Affective bias as a rational response to the statistics of rewards and punishments. eLife. 2017;6:e27879. https://doi.org/10.7554/eLife.27879.

    Google ScholarĀ 

  82. Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica. 1979;47:263-292.

  83. Behrens TEJ, Hunt LT, Woolrich MW, Rushworth MFS. Associative learning of social value. Nature. 2008;456:245–9. https://doi.org/10.1038/nature07538.

    Google ScholarĀ 

  84. Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8:1458–63. https://doi.org/10.1038/nn1584.

  85. Sheehy-Skeffington J. The effects of low socioeconomic status on decision-making processes. Curr Opin Psychol. 2020;33:183–8. https://doi.org/10.1016/j.copsyc.2019.07.043.

    Google ScholarĀ 

  86. Wang G-B, Zhang X-L, Zhao L-Y, Sun L-L, Wu P, Lu L, et al. Drug-related cues exacerbate decision making and increase craving in heroin addicts at different abstinence times. Psychopharmacology (Berl). 2012;221:701–8. https://doi.org/10.1007/s00213-011-2617-5.

  87. Bickel WK, Odum AL, Madden GJ. Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers. Psychopharmacology (Berl). 1999;146:447–54. https://doi.org/10.1007/PL00005490.

    Google ScholarĀ 

  88. Fontes RM, Bovo ACL, Freitas-Lemos R, Bickel WK. Differential discounting of past and future gains and losses in individuals in recovery from substance use disorder. Exp Clin Psychopharmacol. 2025. https://doi.org/10.1037/pha0000769.

  89. Biernacki K, McLennan SN, Terrett G, Labuschagne I, Rendell PG. Decision-making ability in current and past users of opiates: A meta-analysis. Neurosci Biobehav Rev. 2016;71:342–51. https://doi.org/10.1016/j.neubiorev.2016.09.011.

    Google ScholarĀ 

  90. Mintzer MZ, Copersino ML, Stitzer ML. Opioid abuse and cognitive performance. Drug Alcohol Depend. 2005;78:225–30. https://doi.org/10.1016/j.drugalcdep.2004.10.008.

    Google ScholarĀ 

Download references

Acknowledgements

We thank Dr. Timothy Behrens for providing the original reward-variant probabilistic learning task program for adaptation. We also thank the students who helped collect these data: Mikayla Barber, Callie Benson-Williams, Jillian Jolly, Hannah Johns, Jordyn Ricard, and Aram Russell.

Author information

Authors and Affiliations

  1. Department of Psychology, Yale University, New Haven, CT, USA

    Sonia G. Ruiz,Ā Samuel PaskewitzĀ &Ā Arielle Baskin-Sommers

Authors
  1. Sonia G. Ruiz
    View author publications

    Search author on:PubMedĀ Google Scholar

  2. Samuel Paskewitz
    View author publications

    Search author on:PubMedĀ Google Scholar

  3. Arielle Baskin-Sommers
    View author publications

    Search author on:PubMedĀ Google Scholar

Contributions

Conceptualization: SGR, ABS; Data Curation: SGR; Formal Analysis: SGR, SP, ABS; Funding Acquisition: ABS; Investigation: SGR, SP, ABS; Methodology: SGR, SP, ABS; Project Administration: SGR, ABS; Resources: ABS; Software: SGR; Supervision: SP, ABS; Visualization: SGR, SP, ABS; Writing – Original Draft Preparation: SGR, ABS; Writing – Review & Editing: SGR, SP, ABS.

Corresponding author

Correspondence to Sonia G. Ruiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, S.G., Paskewitz, S. & Baskin-Sommers, A. The relationship between regular substance use and cost comparisons in stable and volatile learning contexts. Transl Psychiatry (2026). https://doi.org/10.1038/s41398-026-03830-z

Download citation

  • Received: 24 May 2025

  • Revised: 11 December 2025

  • Accepted: 20 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41398-026-03830-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Publishing
  • About the Editors
  • Contact
  • For Advertisers
  • Calls for Papers
  • Press Releases

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Translational Psychiatry (Transl Psychiatry)

ISSN 2158-3188 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited