Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulation of autophagy by melatonin and its receptors: implications in brain disorders

Abstract

Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin’s ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Melatonin signaling pathways.
Fig. 2: Melatonin transcriptional regulation of autophagy.
Fig. 3: Schematic diagram of the melatonin regulation of autophagy.

Similar content being viewed by others

References

  1. Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24:560–75.

    CAS  PubMed  Google Scholar 

  2. Chung C, Seo W, Silwal P, Jo EK. Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol. 2020;13:100.

    PubMed  PubMed Central  Google Scholar 

  3. Roohbakhsh A, Shamsizadeh A, Hayes AW, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: the role of autophagy. Pharmacol Res. 2018;133:265–76.

    CAS  PubMed  Google Scholar 

  4. Stavoe AKH, Holzbaur ELF. Autophagy in neurons. Annu Rev Cell Dev Biol. 2019;35:477–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hernandez D, Torres CA, Setlik W, Cebrián C, Mosharov EV, Tang G, et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron. 2012;74:277–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Compans B, Camus C, Kallergi E, Sposini S, Martineau M, Butler C, et al. NMDAR-dependent long-term depression is associated with increased short term plasticity through autophagy mediated loss of PSD-95. Nat Commun. 2021;12:2849.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kallergi E, Daskalaki AD, Kolaxi A, Camus C, Ioannou E, Mercaldo V, et al. Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice. Nat Commun. 2022;13:680.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Keary KM 3rd, Gu QH, Chen J, Li Z. Dendritic distribution of autophagosomes underlies pathway-selective induction of LTD. Cell Rep. 2023;42:112898.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li YY, Qin ZH, Sheng R. The multiple roles of autophagy in neural function and diseases. Neurosci Bull. 2023;40:363–82.

  10. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16:487–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharm Toxicol. 2016;56:361–83.

    CAS  Google Scholar 

  12. Hardeland R. Melatonin and inflammation–Story of a double-edged blade. J Pineal Res. 2018;65:e12525.

    PubMed  Google Scholar 

  13. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61:253–78.

    CAS  PubMed  Google Scholar 

  14. Hossain MF, Wang N, Chen R, Li S, Roy J, Uddin MG, et al. Exploring the multifunctional role of melatonin in regulating autophagy and sleep to mitigate Alzheimer’s disease neuropathology. Ageing Res Rev. 2021;67:101304.

    CAS  PubMed  Google Scholar 

  15. Boga JA, Caballero B, Potes Y, Perez-Martinez Z, Reiter RJ, Vega-Naredo I, et al. Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J Pineal Res. 2019;66:e12534.

    PubMed  Google Scholar 

  16. Wongprayoon P, Govitrapong P. Melatonin attenuates methamphetamine-induced neurotoxicity. Curr Pharm Des. 2016;22:1022–32.

    CAS  PubMed  Google Scholar 

  17. Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F, et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res. 2020;69:e12667.

    CAS  PubMed  Google Scholar 

  18. Hunn BHM, Vingill S, Threlfell S, Alegre-Abarrategui J, Magdelyns M, Deltheil T, et al. Impairment of macroautophagy in dopamine neurons has opposing effects on Parkinsonian pathology and behavior. Cell Rep. 2019;29:920–31.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang S, Park D, Manning L, Hill SE, Cao M, Xuan Z, et al. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron. 2022;110:824–40.e10.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Okerlund ND, Schneider K, Leal-Ortiz S, Montenegro-Venegas C, Kim SA, Garner LC, et al. Bassoon controls presynaptic autophagy through Atg5. Neuron. 2017;93:897–913.e7.

    CAS  PubMed  Google Scholar 

  21. Binotti B, Pavlos NJ, Riedel D, Wenzel D, Vorbrüggen G, Schalk AM, et al. The GTPase Rab26 links synaptic vesicles to the autophagy pathway. eLife. 2015;4:e05597.

    PubMed  PubMed Central  Google Scholar 

  22. Shen H, Zhu H, Panja D, Gu Q, Li Z. Autophagy controls the induction and developmental decline of NMDAR-LTD through endocytic recycling. Nat Commun. 2020;11:2979.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pan Y, He X, Li C, Li Y, Li W, Zhang H, et al. Neuronal activity recruits the CRTC1/CREB axis to drive transcription-dependent autophagy for maintaining late-phase LTD. Cell Rep. 2021;36:109398.

    CAS  PubMed  Google Scholar 

  24. Hui KK, Takashima N, Watanabe A, Chater TE, Matsukawa H, Nekooki-Machida Y, et al. GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABA(A) receptor trafficking and social behavior. Sci Adv. 2019;5:eaau8237.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Inoue K, Rispoli J, Yang L, Macleod D, Beal MF, Klann E, et al. Coordinate regulation of mature dopaminergic axon morphology by macroautophagy and the PTEN signaling pathway. PLoS Genet. 2013;9:e1003845.

    PubMed  PubMed Central  Google Scholar 

  26. Overhoff M, Tellkamp F, Hess S, Tolve M, Tutas J, Faerfers M, et al. Autophagy regulates neuronal excitability by controlling cAMP/protein kinase A signaling at the synapse. EMBO J. 2022;41:e110963.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lieberman OJ, Frier MD, McGuirt AF, Griffey CJ, Rafikian E, Yang M, et al. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. eLife. 2020;9:e50843.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron. 1994;13:1177–85.

    CAS  PubMed  Google Scholar 

  29. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci USA. 1995;92:8734–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Klosen P, Lapmanee S, Schuster C, Guardiola B, Hicks D, Pevet P, et al. MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J Pineal Res. 2019;67:e12575.

    PubMed  Google Scholar 

  31. Lacoste B, Angeloni D, Dominguez-Lopez S, Calderoni S, Mauro A, Fraschini F, et al. Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J Pineal Res. 2015;58:397–417.

    CAS  PubMed  Google Scholar 

  32. Brydon L, Roka F, Petit L, de Coppet P, Tissot M, Barrett P, et al. Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins. Mol Endocrinol. 1999;13:2025–38.

    CAS  PubMed  Google Scholar 

  33. Petit L, Lacroix I, de Coppet P, Strosberg AD, Jockers R. Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3’-5’-monophosphate pathway. Biochem Pharmacol. 1999;58:633–9.

    CAS  PubMed  Google Scholar 

  34. Chen M, Cecon E, Karamitri A, Gao W, Gerbier R, Ahmad R, et al. Melatonin MT(1) and MT(2) receptor ERK signaling is differentially dependent on G(i/o) and G(q/11) proteins. J Pineal Res. 2020;68:e12641.

    CAS  PubMed  Google Scholar 

  35. Han JH, Park HS, Lee DH, Jo JH, Heo KS, Myung CS. Regulation of autophagy by controlling Erk1/2 and mTOR for platelet-derived growth factor-BB-mediated vascular smooth muscle cell phenotype shift. Life Sci. 2021;267:118978.

    CAS  PubMed  Google Scholar 

  36. Wu H, Song C, Zhang J, Zhao J, Fu B, Mao T, et al. Melatonin-mediated upregulation of GLUT1 blocks exit from pluripotency by increasing the uptake of oxidized vitamin C in mouse embryonic stem cells. FASEB J: Off Publ Federation Am Societies Exp Biol. 2017;31:1731–43.

    CAS  Google Scholar 

  37. Ayoub MA, Levoye A, Delagrange P, Jockers R. Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol Pharmacol. 2004;66:312–21.

    CAS  PubMed  Google Scholar 

  38. Kamal M, Gbahou F, Guillaume JL, Daulat AM, Benleulmi-Chaachoua A, Luka M, et al. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J Biol Chem. 2015;290:11537–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Levoye A, Dam J, Ayoub MA, Guillaume JL, Couturier C, Delagrange P, et al. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 2006;25:3012–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Poza JJ, Pujol M, Ortega-Albás JJ, Romero O. Melatonin in sleep disorders. Neurologia (Engl Ed). 2022;37:575–85.

    PubMed  Google Scholar 

  41. Torres-Farfan C, Serón-Ferré M, Dinet V, Korf HW. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. J Pineal Res. 2006;40:64–70.

    CAS  PubMed  Google Scholar 

  42. Uz T, Akhisaroglu M, Ahmed R, Manev H. The pineal gland is critical for circadian Period1 expression in the striatum and for circadian cocaine sensitization in mice. Neuropsychopharmacology: Off Publ Am Coll Neuropsychopharmacol. 2003;28:2117–23.

    CAS  Google Scholar 

  43. Hu Y, Lv Y, Long X, Yang G, Zhou J. Melatonin attenuates chronic sleep deprivation-induced cognitive deficits and HDAC3-Bmal1/clock interruption. CNS Neurosci Ther. 2024;30:e14474.

    CAS  PubMed  Google Scholar 

  44. Yin XL, Li JC, Xue R, Li S, Zhang Y, Dong HJ, et al. Melatonin pretreatment prevents propofol-induced sleep disturbance by modulating circadian rhythm in rats. Exp Neurol. 2022;354:114086.

    CAS  PubMed  Google Scholar 

  45. Gobbi G, Comai S. Sleep well. Untangling the role of melatonin MT1 and MT2 receptors in sleep. J Pineal Res. 2019;66:e12544.

    PubMed  Google Scholar 

  46. Sharma R, Sahota P, Thakkar MM. Melatonin promotes sleep in mice by inhibiting orexin neurons in the perifornical lateral hypothalamus. J Pineal Res. 2018;65:e12498.

    PubMed  Google Scholar 

  47. Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E. Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res. 2005;39:113–20.

    CAS  PubMed  Google Scholar 

  48. Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S, Spadoni G, et al. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci: Off J Soc Neurosci. 2011;31:18439–52.

    CAS  Google Scholar 

  49. Wang Q, Zhu D, Ping S, Li C, Pang K, Zhu S, et al. Melatonin recovers sleep phase delayed by MK-801 through the melatonin MT2 receptor-Ca2+-CaMKII-CREB pathway in the ventrolateral preoptic nucleus. J Pineal Res. 2020;69:e12674.

    CAS  PubMed  Google Scholar 

  50. De Crescenzo F, D’Alò GL, Ostinelli EG, Ciabattini M, Di Franco V, Watanabe N, et al. Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: a systematic review and network meta-analysis. Lancet (Lond, Engl). 2022;400:170–84.

    Google Scholar 

  51. Wu XL, Lu SS, Liu MR, Tang WD, Chen JZ, Zheng YR, et al. Melatonin receptor agonist ramelteon attenuates mouse acute and chronic ischemic brain injury. Acta Pharmacol Sin. 2020;41:1016–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang X, Peng B, Zhang S, Wang J, Yuan X, Peled S, et al. The MT1 receptor as the target of ramelteon neuroprotection in ischemic stroke. J Pineal Res. 2024;76:e12925.

    CAS  PubMed  Google Scholar 

  53. de Bodinat C, Guardiola-Lemaitre B, Mocaër E, Renard P, Muñoz C, Millan MJ. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov. 2010;9:628–42.

    PubMed  Google Scholar 

  54. Bourin M, Mocaër E, Porsolt R. Antidepressant-like activity of S 20098 (agomelatine) in the forced swimming test in rodents: involvement of melatonin and serotonin receptors. J Psychiatry Neurosci. 2004;29:126–33.

    PubMed  PubMed Central  Google Scholar 

  55. Mi WF, Tabarak S, Wang L, Zhang SZ, Lin X, Du LT, et al. Effects of agomelatine and mirtazapine on sleep disturbances in major depressive disorder: evidence from polysomnographic and resting-state functional connectivity analyses. Sleep. 2020;43:zsaa092.

    PubMed  Google Scholar 

  56. Lockley SW, Dressman MA, Licamele L, Xiao C, Fisher DM, Flynn-Evans EE, et al. Tasimelteon for non-24-hour sleep-wake disorder in totally blind people (SET and RESET): two multicentre, randomised, double-masked, placebo-controlled phase 3 trials. Lancet (Lond, Engl). 2015;386:1754–64.

    CAS  Google Scholar 

  57. Ge W, Yan ZH, Wang L, Tan SJ, Liu J, Reiter RJ, et al. A hypothetical role for autophagy during the day/night rhythm-regulated melatonin synthesis in the rat pineal gland. J Pineal Res. 2021;71:e12742.

    CAS  PubMed  Google Scholar 

  58. Zhang J, Zhao L, Li Y, Dong H, Zhang H, Zhang Y, et al. Circadian clock regulates granulosa cell autophagy through NR1D1-mediated inhibition of ATG5. Am J Physiol Cell Physiol. 2022;322:C231–C45.

    CAS  PubMed  Google Scholar 

  59. Mei L, Zheng Y, Gao X, Ma T, Xia B, Hao Y, et al. Hsa-let-7f-1-3p targeting the circadian gene Bmal1 mediates intervertebral disc degeneration by regulating autophagy. Pharmacol Res. 2022;186:106537.

    CAS  PubMed  Google Scholar 

  60. Wu R, Dang F, Li P, Wang P, Xu Q, Liu Z, et al. The circadian protein Period2 suppresses mTORC1 activity via recruiting Tsc1 to mTORC1 complex. Cell Metab. 2019;29:653–67.e6.

    CAS  PubMed  Google Scholar 

  61. Kalfalah F, Janke L, Schiavi A, Tigges J, Ix A, Ventura N, et al. Crosstalk of clock gene expression and autophagy in aging. Aging (Albany NY). 2016;8:1876–95.

    CAS  PubMed  Google Scholar 

  62. Ma D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. Embo J. 2011;30:4642–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma D, Lin JD. Circadian regulation of autophagy rhythm through transcription factor C/EBPβ. Autophagy. 2012;8:124–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang L, Tian H, Wang H, Mao X, Luo J, He Q, et al. Disrupting circadian control of autophagy induces podocyte injury and proteinuria. Kidney Int. 2024;105:1020–34.

    CAS  PubMed  Google Scholar 

  65. McKee CA, Polino AJ, King MW, Musiek ES. Circadian clock protein BMAL1 broadly influences autophagy and endolysosomal function in astrocytes. Proc Natl Acad Sci USA. 2023;120:e2220551120.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nopparat C, Sinjanakhom P, Govitrapong P. Melatonin reverses H2O2-induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-κB. J Pineal Res. 2017;63:e12407.

  67. Chen F, Liu H, Wang X, Li Z, Zhang J, Pei Y, et al. Melatonin activates autophagy via the NF-κB signaling pathway to prevent extracellular matrix degeneration in intervertebral disc. Osteoarthr Cartil. 2020;28:1121–32.

    CAS  Google Scholar 

  68. Wang Z, Gao Z, Zheng Y, Kou J, Song D, Yu X, et al. Melatonin inhibits atherosclerosis progression via galectin-3 downregulation to enhance autophagy and inhibit inflammation. J Pineal Res. 2023;74:e12855.

    CAS  PubMed  Google Scholar 

  69. Li M, Pi H, Yang Z, Reiter RJ, Xu S, Chen X, et al. Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells. J Pineal Res. 2016;61:353–69.

    CAS  PubMed  Google Scholar 

  70. Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, et al. Regulation of SIRT1 and its roles in inflammation. Front Immunol. 2022;13:831168.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rahman S, Islam R. Mammalian Sirt1: insights on its biological functions. Cell Commun Signal. 2011;9:11.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010;107:1470–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008;105:3374–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 2015;57:456–66.

    CAS  PubMed  Google Scholar 

  75. Zhang WX, He BM, Wu Y, Qiao JF, Peng ZY. Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. Life Sci. 2019;217:8–15.

    CAS  PubMed  Google Scholar 

  76. Liu L, Cao Q, Gao W, Li BY, Zeng C, Xia Z, et al. Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. FASEB J: Off Publ Federation Am Societies Exp Biol. 2021;35:e22040.

    CAS  Google Scholar 

  77. Pi QZ, Wang XW, Jian ZL, Chen D, Zhang C, Wu QC. Melatonin alleviates cardiac dysfunction via increasing Sirt1-mediated Beclin-1 deacetylation and autophagy during sepsis. Inflammation. 2021;44:1184–93.

    CAS  PubMed  Google Scholar 

  78. Zhang Z, Lin J, Tian N, Wu Y, Zhou Y, Wang C, et al. Melatonin protects vertebral endplate chondrocytes against apoptosis and calcification via the Sirt1-autophagy pathway. J Cell Mol Med. 2019;23:177–93.

    CAS  PubMed  Google Scholar 

  79. Wang P, Zhang S, Lin S, Lv Z. Melatonin ameliorates diabetic hyperglycaemia-induced impairment of Leydig cell steroidogenic function through activation of SIRT1 pathway. Reprod Biol Endocrinol. 2022;20:117.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shen X, Tang C, Wei C, Zhu Y, Xu R. Melatonin induces autophagy in amyotrophic lateral sclerosis mice via upregulation of SIRT1. Mol Neurobiol. 2022;59:4747–60.

    CAS  PubMed  Google Scholar 

  81. Lv QK, Tao KX, Yao XY, Pang MZ, Cao BE, Liu CF, et al. Melatonin MT1 receptors regulate the Sirt1/Nrf2/Ho-1/Gpx4 pathway to prevent α-synuclein-induced ferroptosis in Parkinson’s disease. J Pineal Res. 2024;76:e12948.

    CAS  PubMed  Google Scholar 

  82. Gong Z, Da W, Tian Y, Zhao R, Qiu S, Wu Q, et al. Exogenous melatonin prevents type 1 diabetes mellitus-induced bone loss, probably by inhibiting senescence. Osteoporos Int. 2022;33:453–66.

    CAS  PubMed  Google Scholar 

  83. Zhang J, Fang Y, Tang D, Xu X, Zhu X, Wu S, et al. Activation of MT1/MT2 to protect testes and Leydig cells against cisplatin-induced oxidative stress through the SIRT1/Nrf2 signaling pathway. Cells. 2022;11:1690.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li Y, Chen Y. AMPK and autophagy. Adv Exp Med Biol. 2019;1206:85–108.

    CAS  PubMed  Google Scholar 

  85. Xie S, Deng Y, Pan YY, Wang ZH, Ren J, Guo XL, et al. Melatonin protects against chronic intermittent hypoxia-induced cardiac hypertrophy by modulating autophagy through the 5’ adenosine monophosphate-activated protein kinase pathway. Biochem Biophys Res Commun. 2015;464:975–81.

    CAS  PubMed  Google Scholar 

  86. Di S, Wang Z, Hu W, Yan X, Ma Z, Li X, et al. The protective effects of melatonin against LPS-induced septic myocardial injury: a potential role of AMPK-mediated autophagy. Front Endocrinol. 2020;11:162.

    Google Scholar 

  87. Chen WR, Yang JQ, Liu F, Shen XQ, Zhou YJ. Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ULK1 signaling pathway. Exp Cell Res. 2020;389:111883.

    CAS  PubMed  Google Scholar 

  88. Hao EY, Wang DH, Chang LY, Huang CX, Chen H, Yue QX, et al. Melatonin regulates chicken granulosa cell proliferation and apoptosis by activating the mTOR signaling pathway via its receptors. Poult Sci. 2020;99:6147–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Qin F, Tian J, Zhou D, Chen L. Mst1 and Mst2 kinases: regulations and diseases. Cell Biosci. 2013;3:31.

    PubMed  PubMed Central  Google Scholar 

  90. Lee EF, Smith NA, Soares da Costa TP, Meftahi N, Yao S, Harris TJ, et al. Structural insights into BCL2 pro-survival protein interactions with the key autophagy regulator BECN1 following phosphorylation by STK4/MST1. Autophagy. 2019;15:785–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med. 2013;19:1478–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu J, Zhang L, Yang Y, Guo Y, Fan Y, Zhang M, et al. Melatonin alleviates postinfarction cardiac remodeling and dysfunction by inhibiting Mst1. J Pineal Res. 2017;62:e12368.

  93. Wang S, Zhao Z, Feng X, Cheng Z, Xiong Z, Wang T, et al. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med. 2018;22:5132–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang M, Lin J, Wang S, Cheng Z, Hu J, Wang T, et al. Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. J Pineal Res. 2017;63:e12418.

  95. Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease. Neuropeptides. 2019;73:96–106.

    CAS  PubMed  Google Scholar 

  96. Xu ZQ, Zhang JJ, Kong N, Zhang GY, Ke P, Han T, et al. Autophagy is involved in neuroprotective effect of Alpha7 nicotinic acetylcholine receptor on ischemic stroke. Front Pharmacol. 2021;12:676589.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu Y, Xu S, Zhang H, Qian K, Huang J, Gu X, et al. Stimulation of α7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis. Cell Death Dis. 2021;12:448.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Farré-Alins V, Narros-Fernández P, Palomino-Antolín A, Decouty-Pérez C, Lopez-Rodriguez AB, Parada E, et al. Melatonin reduces NLRP3 inflammasome activation by increasing α7 nAChR-mediated autophagic flux. Antioxidants (Basel). 2020;9:1299.

  99. Jeong JK, Park SY. Melatonin regulates the autophagic flux via activation of alpha-7 nicotinic acetylcholine receptors. J Pineal Res. 2015;59:24–37.

    CAS  PubMed  Google Scholar 

  100. Wang S, Wang L, Qin X, Turdi S, Sun D, Culver B, et al. ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy. Signal Transduct Target Ther. 2020;5:119.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang Y, Wang Y, Xu J, Tian F, Hu S, Chen Y, et al. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res. 2019;66:e12542.

    PubMed  Google Scholar 

  102. Deng Z, He M, Hu H, Zhang W, Zhang Y, Ge Y, et al. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation. Autophagy. 2024;20:151–65.

    CAS  PubMed  Google Scholar 

  103. Kim MJ, Choi GE, Chae CW, Lim JR, Jung YH, Yoon JH, et al. Melatonin-mediated FKBP4 downregulation protects against stress-induced neuronal mitochondria dysfunctions by blocking nuclear translocation of GR. Cell Death Dis. 2023;14:146.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang J, Liu H, Han S, Fu Z, Wang J, Chen Y, et al. Melatonin pretreatment alleviates renal ischemia-reperfusion injury by promoting autophagic flux via TLR4/MyD88/MEK/ERK/mTORC1 signaling. FASEB J: Off Publ Federation Am Societies Exp Biol. 2020;34:12324–37.

    CAS  Google Scholar 

  105. Zhou H, Du W, Li Y, Shi C, Hu N, Ma S, et al. Effects of melatonin on fatty liver disease: The role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res. 2018;64:e12450.

  106. Carloni S, Favrais G, Saliba E, Albertini MC, Chalon S, Longini M, et al. Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J Pineal Res. 2016;61:370–80.

    CAS  PubMed  Google Scholar 

  107. Zhang S, Tian W, Duan X, Zhang Q, Cao L, Liu C, et al. Melatonin attenuates diabetic cardiomyopathy by increasing autophagy of cardiomyocytes via regulation of VEGF-B/GRP78/PERK signaling pathway. Cardiovasc Diabetol. 2024;23:19.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shen M, Cao Y, Jiang Y, Wei Y, Liu H. Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism. Redox Biol. 2018;18:138–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang Y, Liang B, Li Z, Zhong Y, Wang B, Zhang B, et al. Polystyrene nanoplastic exposure induces excessive mitophagy by activating AMPK/ULK1 pathway in differentiated SH-SY5Y cells and dopaminergic neurons in vivo. Part Fibre Toxicol. 2023;20:44.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Su LY, Li H, Lv L, Feng YM, Li GD, Luo R, et al. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy. 2015;11:1745–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, et al. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res. 2017;62:e12395.

  112. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet (Lond, Engl). 2021;397:1577–90.

    CAS  Google Scholar 

  113. Zhang Z, Yang X, Song YQ, Tu J. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives. Ageing Res Rev. 2021;72:101464.

    CAS  PubMed  Google Scholar 

  114. Pradeepkiran JA, Reddy PH. Defective mitophagy in Alzheimer’s disease. Ageing Res Rev. 2020;64:101191.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22:401–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hou Y, Chu X, Park JH, Zhu Q, Hussain M, Li Z, et al. Urolithin A improves Alzheimer’s disease cognition and restores mitophagy and lysosomal functions. Alzheimers Dement. 2024;20:4212–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Cen X, Chen Y, Xu X, Wu R, He F, Zhao Q, et al. Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer’s disease mouse model. Nat Commun. 2020;11:5731.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res. 2003;35:125–30.

    CAS  PubMed  Google Scholar 

  119. Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R, et al. Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J Pineal Res. 2002;32:59–62.

    PubMed  Google Scholar 

  120. Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, et al. Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J Pineal Res. 2005;38:10–6.

    CAS  PubMed  Google Scholar 

  121. Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, et al. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res. 2004;37:129–36.

    CAS  PubMed  Google Scholar 

  122. Li LB, Fan YG, Wu WX, Bai CY, Jia MY, Hu JP, et al. Novel melatonin-trientine conjugate as potential therapeutic agents for Alzheimer’s disease. Bioorg Chem. 2022;128:106100.

    CAS  PubMed  Google Scholar 

  123. Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res. 2009;47:82–96.

    CAS  PubMed  Google Scholar 

  124. Wang YP, Li XT, Liu SJ, Zhou XW, Wang XC, Wang JZ. Melatonin ameliorated okadaic-acid induced Alzheimer-like lesions. Acta Pharmacol Sin. 2004;25:276–80.

    PubMed  Google Scholar 

  125. Feng Z, Zhang JT. Melatonin reduces amyloid beta-induced apoptosis in pheochromocytoma (PC12) cells. J Pineal Res. 2004;37:257–66.

    CAS  PubMed  Google Scholar 

  126. Das R, Balmik AA, Chinnathambi S. Effect of Melatonin on Tau aggregation and Tau-mediated cell surface morphology. Int J Biol Macromol. 2020;152:30–9.

    CAS  PubMed  Google Scholar 

  127. Hoppe JB, Frozza RL, Horn AP, Comiran RA, Bernardi A, Campos MM, et al. Amyloid-beta neurotoxicity in organotypic culture is attenuated by melatonin: involvement of GSK-3beta, tau and neuroinflammation. J Pineal Res. 2010;48:230–8.

    CAS  PubMed  Google Scholar 

  128. Stefanova NA, Maksimova KY, Kiseleva E, Rudnitskaya EA, Muraleva NA, Kolosova NG. Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology. J Pineal Res. 2015;59:163–77.

    CAS  PubMed  Google Scholar 

  129. O’Neal-Moffitt G, Delic V, Bradshaw PC, Olcese J. Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPPswe/PS1 mice. Mol Neurodegener. 2015;10:27.

    PubMed  PubMed Central  Google Scholar 

  130. Park H, Kim J. Activation of melatonin receptor 1 by CRISPR-Cas9 activator ameliorates cognitive deficits in an Alzheimer’s disease mouse model. J Pineal Res. 2022;72:e12787.

    CAS  PubMed  Google Scholar 

  131. Tang H, Ma M, Wu Y, Deng MF, Hu F, Almansoub H, et al. Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer’s disease via C/EBPα/miR-125b pathway. Aging Cell. 2019;18:e12902.

    PubMed  PubMed Central  Google Scholar 

  132. Wang Z, Zhang YH, Zhang W, Gao HL, Zhong ML, Huang TT, et al. Copper chelators promote nonamyloidogenic processing of AβPP via MT(1/2) /CREB-dependent signaling pathways in AβPP/PS1 transgenic mice. J Pineal Res. 2018;65:e12502.

    PubMed  Google Scholar 

  133. Chinchalongporn V, Shukla M, Govitrapong P. Melatonin ameliorates Aβ42-induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells. J Pineal Res. 2018;64:e12470.

    PubMed  Google Scholar 

  134. Luengo E, Buendia I, Fernández-Mendívil C, Trigo-Alonso P, Negredo P, Michalska P, et al. Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. J Pineal Res. 2019;67:e12578.

    PubMed  Google Scholar 

  135. Dragicevic N, Copes N, O’Neal-Moffitt G, Jin J, Buzzeo R, Mamcarz M, et al. Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res. 2011;51:75–86.

    CAS  PubMed  Google Scholar 

  136. Chen C, Yang C, Wang J, Huang X, Yu H, Li S, et al. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer’s disease. J Pineal Res. 2021;71:e12774.

    CAS  PubMed  Google Scholar 

  137. Panmanee J, Nopparat C, Chavanich N, Shukla M, Mukda S, Song W, et al. Melatonin regulates the transcription of βAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J Pineal Res. 2015;59:308–20.

    CAS  PubMed  Google Scholar 

  138. Jenwitheesuk A, Boontem P, Wongchitrat P, Tocharus J, Mukda S, Govitrapong P. Melatonin regulates the aging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. Excli J. 2017;16:340–53.

    PubMed  PubMed Central  Google Scholar 

  139. Kalia LV, Lang AE. Parkinson’s disease. Lancet (Lond, Engl). 2015;386:896–912.

    CAS  Google Scholar 

  140. Lizama BN, Chu CT. Neuronal autophagy and mitophagy in Parkinson’s disease. Mol Asp Med. 2021;82:100972.

    CAS  Google Scholar 

  141. Nechushtai L, Frenkel D, Pinkas-Kramarski R. Autophagy in Parkinson’s disease. Biomolecules. 2023;13:1435.

  142. Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013;16:394–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wauters F, Cornelissen T, Imberechts D, Martin S, Koentjoro B, Sue C, et al. LRRK2 mutations impair depolarization-induced mitophagy through inhibition of mitochondrial accumulation of RAB10. Autophagy. 2020;16:203–22.

    CAS  PubMed  Google Scholar 

  144. Kuo SH, Tasset I, Cheng MM, Diaz A, Pan MK, Lieberman OJ, et al. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. Sci Adv. 2022;8:eabm6393.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Oh CK, Sultan A, Platzer J, Dolatabadi N, Soldner F, McClatchy DB, et al. S-Nitrosylation of PINK1 attenuates PINK1/Parkin-dependent mitophagy in hiPSC-based Parkinson’s disease models. Cell Rep. 2017;21:2171–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ou Z, Zhou Y, Wang L, Xue L, Zheng J, Chen L, et al. NLRP3 inflammasome inhibition prevents α-synuclein pathology by relieving autophagy dysfunction in chronic MPTP-treated NLRP3 knockout mice. Mol Neurobiol. 2021;58:1303–11.

    CAS  PubMed  Google Scholar 

  147. Zhou H, Chen J, Lu X, Shen C, Zeng J, Chen L, et al. Melatonin protects against rotenone-induced cell injury via inhibition of Omi and Bax-mediated autophagy in HeLa cells. J Pineal Res. 2012;52:120–7.

    CAS  PubMed  Google Scholar 

  148. Biswal L, Sardoiwala MN, Kushwaha AC, Mukherjee S, Karmakar S. Melatonin-loaded nanoparticles augment mitophagy to retard Parkinson’s disease. ACS Appl Mater Interfaces. 2024;16:8417–29.

    CAS  PubMed  Google Scholar 

  149. Jeong JK, Lee JH, Moon JH, Lee YJ, Park SY. Melatonin-mediated β-catenin activation protects neuron cells against prion protein-induced neurotoxicity. J Pineal Res. 2014;57:427–34.

    CAS  PubMed  Google Scholar 

  150. Jeong JK, Moon MH, Lee YJ, Seol JW, Park SY. Melatonin-induced autophagy protects against human prion protein-mediated neurotoxicity. J Pineal Res. 2012;53:138–46.

    CAS  PubMed  Google Scholar 

  151. Díaz-Casado ME, Lima E, García JA, Doerrier C, Aranda P, Sayed RK, et al. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network. J Pineal Res. 2016;61:96–107.

    PubMed  Google Scholar 

  152. Zheng R, Ruan Y, Yan Y, Lin Z, Xue N, Yan Y, et al. Melatonin attenuates neuroinflammation by down-regulating NLRP3 inflammasome via a SIRT1-dependent pathway in MPTP-induced models of Parkinson’s disease. J Inflamm Res. 2021;14:3063–75.

    PubMed  PubMed Central  Google Scholar 

  153. Alvira D, Tajes M, Verdaguer E, Acuña-Castroviejo D, Folch J, Camins A, et al. Inhibition of the CDK5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. J Pineal Res. 2006;40:251–8.

    CAS  PubMed  Google Scholar 

  154. Walker FO. Huntington’s disease. Lancet (Lond, Engl). 2007;369:218–28.

    CAS  Google Scholar 

  155. Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019;101:801–19.

    CAS  PubMed  Google Scholar 

  156. McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25:24–34.

    CAS  PubMed  Google Scholar 

  157. Pircs K, Drouin-Ouellet J, Horváth V, Gil J, Rezeli M, Garza R, et al. Distinct subcellular autophagy impairments in induced neurons from patients with Huntington’s disease. Brain. 2022;145:3035–57.

    PubMed  Google Scholar 

  158. Ochaba J, Lukacsovich T, Csikos G, Zheng S, Margulis J, Salazar L, et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci USA. 2014;111:16889–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Rui YN, Xu Z, Patel B, Chen Z, Chen D, Tito A, et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol. 2015;17:262–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Franco-Iborra S, Plaza-Zabala A, Montpeyo M, Sebastian D, Vila M, Martinez-Vicente M. Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy. 2021;17:672–89.

    CAS  PubMed  Google Scholar 

  161. Wold MS, Lim J, Lachance V, Deng Z, Yue Z. ULK1-mediated phosphorylation of ATG14 promotes autophagy and is impaired in Huntington’s disease models. Mol Neurodegener. 2016;11:76.

    PubMed  PubMed Central  Google Scholar 

  162. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010;13:567–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36:585–95.

    CAS  PubMed  Google Scholar 

  164. Fu Y, Sun X, Lu B. HIPK3 modulates autophagy and HTT protein levels in neuronal and mouse models of Huntington disease. Autophagy. 2018;14:169–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Bailus BJ, Scheeler SM, Simons J, Sanchez MA, Tshilenge KT, Creus-Muncunill J, et al. Modulating FKBP5/FKBP51 and autophagy lowers HTT (huntingtin) levels. Autophagy. 2021;17:4119–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Aron R, Pellegrini P, Green EW, Maddison DC, Opoku-Nsiah K, Oliveira AO, et al. Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington’s disease. Nat Commun. 2018;9:3191.

    PubMed  PubMed Central  Google Scholar 

  167. Brattås PL, Hersbach BA, Madsen S, Petri R, Jakobsson J, Pircs K. Impact of differential and time-dependent autophagy activation on therapeutic efficacy in a model of Huntington disease. Autophagy. 2021;17:1316–29.

    PubMed  Google Scholar 

  168. Zhao DY, Bäuerlein FJB, Saha I, Hartl FU, Baumeister W, Wilfling F. Autophagy preferentially degrades non-fibrillar polyQ aggregates. Mol Cell. 2024;84:1980–94.e8.

    CAS  PubMed  Google Scholar 

  169. Kim J, Li W, Wang J, Baranov SV, Heath BE, Jia J, et al. Biosynthesis of neuroprotective melatonin is dysregulated in Huntington’s disease. J Pineal Res. 2023;75:e12909.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kalliolia E, Silajdžić E, Nambron R, Hill NR, Doshi A, Frost C, et al. Plasma melatonin is reduced in Huntington’s disease. Mov Disord. 2014;29:1511–5.

    CAS  PubMed  Google Scholar 

  171. Southgate GS, Daya S, Potgieter B. Melatonin plays a protective role in quinolinic acid-induced neurotoxicity in the rat hippocampus. J Chem Neuroanat. 1998;14:151–6.

    CAS  PubMed  Google Scholar 

  172. Antunes Wilhelm E, Ricardo Jesse C, Folharini Bortolatto C, Wayne Nogueira C. Correlations between behavioural and oxidative parameters in a rat quinolinic acid model of Huntington’s disease: protective effect of melatonin. Eur J Pharmacol. 2013;701:65–72.

    CAS  PubMed  Google Scholar 

  173. Túnez I, Montilla P, Del Carmen Muñoz M, Feijóo M, Salcedo M. Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington’s disease. J Pineal Res. 2004;37:252–6.

    PubMed  Google Scholar 

  174. Chakraborty J, Nthenge-Ngumbau DN, Rajamma U, Mohanakumar KP. Melatonin protects against behavioural dysfunctions and dendritic spine damage in 3-nitropropionic acid-induced rat model of Huntington’s disease. Behavioural Brain Res. 2014;264:91–104.

    CAS  Google Scholar 

  175. Wang X, Sirianni A, Pei Z, Cormier K, Smith K, Jiang J, et al. The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci: Off J Soc Neurosci. 2011;31:14496–507.

    CAS  Google Scholar 

  176. Gupta S, Sharma B. Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington’s disease. Pharmacol Biochem Behav. 2014;122:122–35.

    CAS  PubMed  Google Scholar 

  177. Tajes M, Gutierrez-Cuesta J, Ortuño-Sahagun D, Camins A, Pallàs M. Anti-aging properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway. J Pineal Res. 2009;47:228–37.

    CAS  PubMed  Google Scholar 

  178. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 2008;4:762–9.

    CAS  PubMed  Google Scholar 

  179. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169:566–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L, et al. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy. 2010;6:738–53.

    CAS  PubMed  Google Scholar 

  181. Beccari S, Sierra-Torre V, Valero J, Pereira-Iglesias M, García-Zaballa M, Soria FN, et al. Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy. Autophagy. 2023;19:1952–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Thiebaut AM, Buendia I, Ginet V, Lemarchand E, Boudjadja MB, Hommet Y, et al. Thrombolysis by PLAT/tPA increases serum free IGF1 leading to a decrease of deleterious autophagy following brain ischemia. Autophagy. 2022;18:1297–317.

    CAS  PubMed  Google Scholar 

  183. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, et al. Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol. 2014;171:3146–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Forte M, Marchitti S, Cotugno M, Di Nonno F, Stanzione R, Bianchi F, et al. Trehalose, a natural disaccharide, reduces stroke occurrence in the stroke-prone spontaneously hypertensive rat. Pharmacol Res. 2021;173:105875.

    CAS  PubMed  Google Scholar 

  185. Hwang JY, Gertner M, Pontarelli F, Court-Vazquez B, Bennett MV, Ofengeim D, et al. Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die. Cell Death Differ. 2017;24:317–29.

    CAS  PubMed  Google Scholar 

  186. Liu Y, Xue X, Zhang H, Che X, Luo J, Wang P, et al. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy. 2019;15:493–509.

    PubMed  Google Scholar 

  187. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy. 2012;8:77–87.

    CAS  PubMed  Google Scholar 

  188. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013;9:1321–33.

    CAS  PubMed  Google Scholar 

  189. Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy. 2017;13:473–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Hwang I, Kim BS, Lee HY, Cho SW, Lee SE, Ahn JY. PA2G4/EBP1 ubiquitination by PRKN/PARKIN promotes mitophagy protecting neuron death in cerebral ischemia. Autophagy. 2024;20:365–79.

    CAS  PubMed  Google Scholar 

  191. Zheng Y, Hou J, Liu J, Yao M, Li L, Zhang B, et al. Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats. J Pharm Sci. 2014;124:354–64.

    CAS  Google Scholar 

  192. Yilmaz U, Tanbek K, Gul S, Gul M, Koc A, Sandal S. Melatonin attenuates cerebral ischemia/reperfusion injury through inducing autophagy. Neuroendocrinology. 2023;113:1035–50.

    CAS  PubMed  Google Scholar 

  193. Lu D, Liu Y, Huang H, Hu M, Li T, Wang S, et al. Melatonin offers dual-phase protection to brain vessel endothelial cells in prolonged cerebral ischemia-recanalization through ameliorating ER stress and resolving refractory stress granule. Transl Stroke Res. 2023;14:910–28.

    CAS  PubMed  Google Scholar 

  194. Shi Q, Cheng Q, Chen C. The role of autophagy in the pathogenesis of ischemic stroke. Curr Neuropharmacol. 2021;19:629–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Liu ZJ, Ran YY, Qie SY, Gong WJ, Gao FH, Ding ZT, et al. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther. 2019;25:1353–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang J, Gao S, Lenahan C, Gu Y, Wang X, Fang Y, et al. Melatonin as an antioxidant agent in stroke: an updated review. Aging Dis. 2022;13:1823–44.

    PubMed  PubMed Central  Google Scholar 

  197. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories. 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (Lond, Engl). 2018;392:1789–858.

    Google Scholar 

  198. Malhi GS, Mann JJ. Depression. Lancet (Lond, Engl). 2018;392:2299–312.

    Google Scholar 

  199. Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, et al. Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med. 2014;11:e1001755.

    PubMed  PubMed Central  Google Scholar 

  200. Scaini G, Mason BL, Diaz AP, Jha MK, Soares JC, Trivedi MH, et al. Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: Does inflammation play a role? Molecular Psychiatry. 2021;27:1095–102.

  201. Alcocer-Gómez E, Casas-Barquero N, Williams MR, Romero-Guillena SL, Cañadas-Lozano D, Bullón P, et al. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in Major depressive disorder. Pharmacol Res. 2017;121:114–21.

    PubMed  Google Scholar 

  202. Zhou Y, Yan M, Pan R, Wang Z, Tao X, Li C, et al. Radix Polygalae extract exerts antidepressant effects in behavioral despair mice and chronic restraint stress-induced rats probably by promoting autophagy and inhibiting neuroinflammation. J Ethnopharmacol. 2021;265:113317.

    CAS  PubMed  Google Scholar 

  203. Gan H, Ma Q, Hao W, Yang N, Chen ZS, Deng L, et al. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res. 2024;202:107112.

    CAS  PubMed  Google Scholar 

  204. Zhu YJ, Huang J, Chen R, Zhang Y, He X, Duan WX, et al. Autophagy dysfunction contributes to NLRP1 inflammasome-linked depressive-like behaviors in mice. J Neuroinflammation. 2024;21:6.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Cleary C, Linde JA, Hiscock KM, Hadas I, Belmaker RH, Agam G, et al. Antidepressive-like effects of rapamycin in animal models: Implications for mTOR inhibition as a new target for treatment of affective disorders. Brain Res Bull. 2008;76:469–73.

    CAS  PubMed  Google Scholar 

  206. Kara NZ, Toker L, Agam G, Anderson GW, Belmaker RH, Einat H. Trehalose induced antidepressant-like effects and autophagy enhancement in mice. Psychopharmacology. 2013;229:367–75.

    CAS  PubMed  Google Scholar 

  207. Jiang P, Guo Y, Dang R, Yang M, Liao D, Li H, et al. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J Neuroinflammation. 2017;14:239.

    PubMed  PubMed Central  Google Scholar 

  208. Huang X, Wu H, Jiang R, Sun G, Shen J, Ma M, et al. The antidepressant effects of ɑ-tocopherol are related to activation of autophagy via the AMPK/mTOR pathway. Eur J Pharmacol. 2018;833:1–7.

    CAS  PubMed  Google Scholar 

  209. Zhao Z, Zhang L, Guo XD, Cao LL, Xue TF, Zhao XJ, et al. Rosiglitazone exerts an anti-depressive effect in unpredictable chronic mild-stress-induced depressive mice by maintaining essential neuron autophagy and inhibiting excessive astrocytic apoptosis. Front Mol Neurosci. 2017;10:293.

    PubMed  PubMed Central  Google Scholar 

  210. Gulbins A, Schumacher F, Becker KA, Wilker B, Soddemann M, Boldrin F, et al. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol Psychiatry. 2018;23:2324–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Shu X, Sun Y, Sun X, Zhou Y, Bian Y, Shu Z, et al. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis. 2019;10:577.

    PubMed  PubMed Central  Google Scholar 

  212. Kwon Y, Bang Y, Moon SH, Kim A, Choi HJ. Amitriptyline interferes with autophagy-mediated clearance of protein aggregates via inhibiting autophagosome maturation in neuronal cells. Cell Death Dis. 2020;11:874.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Jung S, Choe S, Woo H, Jeong H, An HK, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2020;16:512–30.

    CAS  PubMed  Google Scholar 

  214. Zhang K, Wang F, Zhai M, He M, Hu Y, Feng L, et al. Hyperactive neuronal autophagy depletes BDNF and impairs adult hippocampal neurogenesis in a corticosterone-induced mouse model of depression. Theranostics. 2023;13:1059–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, et al. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol. 2019;10:1511.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Yao D, Li R, Hao J, Huang H, Wang X, Ran L, et al. Melatonin alleviates depression-like behaviors and cognitive dysfunction in mice by regulating the circadian rhythm of AQP4 polarization. Transl Psychiatry. 2023;13:310.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Gao Z, Luo K, Hu Y, Niu Y, Zhu X, Li S, et al. Melatonin alleviates chronic stress-induced hippocampal microglia pyroptosis and subsequent depression-like behaviors by inhibiting Cathepsin B/NLRP3 signaling pathway in rats. Transl Psychiatry. 2024;14:166.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Hickie IB, Rogers NL. Novel melatonin-based therapies: potential advances in the treatment of major depression. Lancet (Lond, Engl). 2011;378:621–31.

    CAS  Google Scholar 

  219. De Crescenzo F, Lennox A, Gibson JC, Cordey JH, Stockton S, Cowen PJ, et al. Melatonin as a treatment for mood disorders: a systematic review. Acta Psychiatr Scand. 2017;136:549–58.

    PubMed  Google Scholar 

  220. Lan T, Wu Y, Zhang Y, Li S, Zhu Z, Wang L, et al. Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Gαi-2-PKA-ASK1 signaling pathway. J Neuroinflammation. 2022;19:117.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Guo ML, Liao K, Periyasamy P, Yang L, Cai Y, Callen SE, et al. Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy. 2015;11:995–1009.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhang P, Li Y, Fu Y, Huang L, Liu B, Zhang L, et al. Inhibition of autophagy signaling via 3-methyladenine rescued nicotine-mediated cardiac pathological effects and heart dysfunctions. Int J Biol Sci. 2020;16:1349–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu LT, Song YQ, Chen XS, Liu Y, Zhu JJ, Zhou LM, et al. Morphine-induced RACK1-dependent autophagy in immortalized neuronal cell lines. Br J Pharmacol. 2020;177:1609–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Zhao L, Zhu Y, Wang D, Chen M, Gao P, Xiao W, et al. Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus. Autophagy. 2010;6:386–94.

    CAS  PubMed  Google Scholar 

  225. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Su LY, Luo R, Liu Q, Su JR, Yang LX, Ding YQ, et al. Atg5- and Atg7-dependent autophagy in dopaminergic neurons regulates cellular and behavioral responses to morphine. Autophagy. 2017;13:1496–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Pasquali L, Lazzeri G, Isidoro C, Ruggieri S, Paparelli A, Fornai F. Role of autophagy during methamphetamine neurotoxicity. Ann N Y Acad Sci. 2008;1139:191–6.

    CAS  PubMed  Google Scholar 

  228. Kanthasamy A, Anantharam V, Ali SF, Kanthasamy AG. Methamphetamine induces autophagy and apoptosis in a mesencephalic dopaminergic neuronal culture model: role of cathepsin-D in methamphetamine-induced apoptotic cell death. Ann N Y Acad Sci. 2006;1074:234–44.

    CAS  PubMed  Google Scholar 

  229. Ma J, Wan J, Meng J, Banerjee S, Ramakrishnan S, Roy S. Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. Cell death Dis. 2014;5:e1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D. Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci : Off J Soc Neurosci. 2002;22:8951–60.

    CAS  Google Scholar 

  231. Li B, Chen R, Chen L, Qiu P, Ai X, Huang E, et al. Effects of DDIT4 in methamphetamine-induced autophagy and apoptosis in dopaminergic neurons. Mol Neurobiol. 2017;54:1642–60.

    CAS  PubMed  Google Scholar 

  232. Lazzeri G, Busceti CL, Biagioni F, Fabrizi C, Morucci G, Giorgi FS, et al. Norepinephrine protects against methamphetamine toxicity through β2-adrenergic receptors promoting LC3 compartmentalization. Int J Mol Sci. 2021;22:7232.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. He T, Han C, Liu C, Chen J, Yang H, Zheng L, et al. Dopamine D1 receptors mediate methamphetamine-induced dopaminergic damage: involvement of autophagy regulation via the AMPK/FOXO3A pathway. Psychopharmacology. 2022;239:951–64.

    CAS  PubMed  Google Scholar 

  234. Xu H, Zhu Y, Chen X, Yang T, Wang X, Song X, et al. Mystery of methamphetamine-induced autophagosome accumulation in hippocampal neurons: loss of syntaxin 17 in defects of dynein-dynactin driving and autophagosome-late endosome/lysosome fusion. Arch Toxicol. 2021;95:3263–84.

    CAS  PubMed  Google Scholar 

  235. Wang X, Hu M, Chen J, Lou X, Zhang H, Li M, et al. Key roles of autophagosome/endosome maturation mediated by Syntaxin17 in methamphetamine-induced neuronal damage in mice. Mol Med. 2024;30:4.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Li IH, Ma KH, Weng SJ, Huang SS, Liang CM, Huang YS. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine (‘ecstasy’)–induced neurotoxicity in cultured cortical neurons. PLoS One. 2014;9:e116565.

    PubMed  PubMed Central  Google Scholar 

  237. Mercer LD, Higgins GC, Lau CL, Lawrence AJ, Beart PM. MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology. Neurochem Int. 2017;105:80–90.

    PubMed  Google Scholar 

  238. Li IH, Ma KH, Kao TJ, Lin YY, Weng SJ, Yen TY, et al. Involvement of autophagy upregulation in 3,4-methylenedioxymethamphetamine (‘ecstasy’)-induced serotonergic neurotoxicity. Neurotoxicology. 2016;52:114–26.

    CAS  PubMed  Google Scholar 

  239. Shih JH, Chiu CH, Ma KH, Huang YS, Shiue CY, Yeh TY, et al. Autophagy inhibition plays a protective role against 3, 4-methylenedioxymethamphetamine (MDMA)-induced loss of serotonin transporters and depressive-like behaviors in rats. Pharmacol Res. 2019;142:283–93.

    CAS  PubMed  Google Scholar 

  240. Feng YM, Jia YF, Su LY, Wang D, Lv L, Xu L, et al. Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin. Autophagy. 2013;9:1395–406.

    CAS  PubMed  Google Scholar 

  241. Liu Q, Su LY, Sun C, Jiao L, Miao Y, Xu M, et al. Melatonin alleviates morphine analgesic tolerance in mice by decreasing NLRP3 inflammasome activation. Redox Biol. 2020;34:101560.

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Kongsuphol P, Mukda S, Nopparat C, Villarroel A, Govitrapong P. Melatonin attenuates methamphetamine-induced deactivation of the mammalian target of rapamycin signaling to induce autophagy in SK-N-SH cells. J Pineal Res. 2009;46:199–206.

    CAS  PubMed  Google Scholar 

  243. Nopparat C, Porter JE, Ebadi M, Govitrapong P. The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res. 2010;49:382–9.

    CAS  PubMed  Google Scholar 

  244. Wongprayoon P, Govitrapong P. Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line. Neurotoxicology. 2015;50:122–30.

    CAS  PubMed  Google Scholar 

  245. Suwanjang W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B. The protective effect of melatonin on methamphetamine-induced calpain-dependent death pathway in human neuroblastoma SH-SY5Y cultured cells. J Pineal Res. 2010;48:94–101.

    CAS  PubMed  Google Scholar 

  246. Alghamdi BS, Alshehri FS. Melatonin blocks morphine-induced place preference: involvement of GLT-1, NF-κB, BDNF, and CREB in the nucleus accumbens. Front Behav Neurosci. 2021;15:762297.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Veschsanit N, Yang JL, Ngampramuan S, Viwatpinyo K, Pinyomahakul J, Lwin T, et al. Melatonin reverts methamphetamine-induced learning and memory impairments and hippocampal alterations in mice. Life Sci. 2021;265:118844.

    CAS  PubMed  Google Scholar 

  248. Lwin T, Yang JL, Ngampramuan S, Viwatpinyo K, Chancharoen P, Veschsanit N, et al. Melatonin ameliorates methamphetamine-induced cognitive impairments by inhibiting neuroinflammation via suppression of the TLR4/MyD88/NF-κB signaling pathway in the mouse hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;111:110109.

    CAS  Google Scholar 

  249. Nikoletopoulou V, Sidiropoulou K, Kallergi E, Dalezios Y, Tavernarakis N. Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab. 2017;26:230–42.e5.

    CAS  PubMed  Google Scholar 

  250. Ghosh S, Choudhury S, Chowdhury O, Mukherjee S, Das A, Sain A, et al. Inflammation-induced behavioral changes is driven by alterations in Nrf2-dependent apoptosis and autophagy in mouse hippocampus: role of fluoxetine. Cell Signal. 2020;68:109521.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Zhejiang Provincial Universities (226-2023-00013), the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (SN-ZJU-SIAS-0011), the National Natural Science Foundation of China (82173792), and the Jinhua Science and Technology Plan Projects (2023-3-170).

Author information

Authors and Affiliations

Authors

Contributions

CZZ and XNZ conceptualized the study. CZZ and GZL wrote the initial draft. HFL and YYL revised the manuscript. YL was responsible for creating figures and tables. XNZ supervised the article. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiang-nan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Cz., Li, Gz., Lyu, Hf. et al. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 46, 525–538 (2025). https://doi.org/10.1038/s41401-024-01398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01398-2

Keywords

This article is cited by

Search

Quick links