Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A derivative of tanshinone IIA and salviadione, 15a, inhibits inflammation and alleviates DSS-induced colitis in mice by direct binding and inhibition of RIPK2

Abstract

Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions primarily affecting the gastrointestinal tract. Previous studies established the role of the NF-κB signaling pathway in the development of IBDs, suggesting that anti-inflammatory therapies might offer a viable treatment strategy. Tanshinone IIA and salviadione, both derived from Salviae Miltiorrhizae Radix et Rhizoma, possess anti-inflammatory and anti-oxidative activities. A series of new compounds were synthesized by hybridizing salviadione with tanshinone. Among these compounds, 15a showed beneficial effects in LPS-induced acute lung injury and diabetes-induced renal injury mouse models. The current study explored the therapeutic efficacy of 15a using both acute and chronic colitis models and elucidated the underlying mechanisms. DSS-induced colitis models were established in mice, where acute colitis was treated with compound 15a (5 or 10 mg·kg−1·d−1) for 8 days, while chronic colitis mice received compound 15a (5 or 10 mg·kg−1·d−1, i.g.) during 2.5% DSS administration. The 15a treatment significantly alleviated DSS-induced pathological and inflammatory damages in both acute and chronic colitis mouse models. In mouse intestinal epithelial cell line MODE-K, pretreatment with compound 15a (5 or 10 μM) significantly suppressed LPS + L18-MDP-induced inflammatory responses. The receptor-interacting serine/threonine kinase 2 (RIPK2) was identified as a direct binding target of compound 15a using microarrays and recombinant human proteins. Moreover, 15a could directly bind to and inhibit the phosphorylation of RIPK2, leading to the suppression of the NF-κB and MAPK signaling pathways. Furthermore, LEU153 and VAL32 were identified within the KD domain of RIPK2 as critical amino residues for the binding of 15a. Briefly, the current findings demonstrate that compound 15a holds promise as a therapeutic agent for managing acute and chronic colitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compound 15a attenuates colonic damage in the DSS-induced acute colitis mouse model.
Fig. 2: Compound 15a reduces inflammatory response in the DSS-induced acute colitis mouse model.
Fig. 3: Compound 15a attenuates colonic damage in the DSS-induced chronic colitis mouse model.
Fig. 4: Compound 15a reduces inflammatory response in the DSS-induced chronic colitis mouse model.
Fig. 5: Identification of RIPK2 as the direct binding target of compound 15a.
Fig. 6: Compound 15a alleviates both acute and chronic colitis by inhibiting the activation of RIPK2.
Fig. 7: Compound 15a suppresses the NF-κB and MAPK signaling pathways by inhibiting the activation of RIPK2 in intestinal epithelial cells.

Similar content being viewed by others

References

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29.

    CAS  PubMed  Google Scholar 

  2. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y. The gut microbiota in inflammatory bowel disease. Front Cell Infect Microbiol. 2022;12:733992.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.

    PubMed  PubMed Central  Google Scholar 

  5. Kaplan GG, Ng SC. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology. 2017;152:313–21.e2.

    PubMed  Google Scholar 

  6. Saez A, Herrero-Fernandez B, Gomez-Bris R, Sanchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of inflammatory bowel disease: innate immune system. Int J Mol Sci. 2023;24:1526.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34.

    CAS  PubMed  Google Scholar 

  8. Xiao YT, Yan WH, Cao Y, Yan JK, Cai W. Neutralization of IL-6 and TNF-alpha ameliorates intestinal permeability in DSS-induced colitis. Cytokine. 2016;83:189–92.

    CAS  PubMed  Google Scholar 

  9. Aardoom MA, Veereman G, de Ridder L. A Review on the use of anti-TNF in children and adolescents with inflammatory bowel disease. Int J Mol Sci. 2019;20:2529.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Verstockt B, Ferrante M, Vermeire S, Van Assche G. New treatment options for inflammatory bowel diseases. J Gastroenterol. 2018;53:585–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, et al. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science. 2009;324:242–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-kappaB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal. 2024;17:eadh1641.

    CAS  PubMed  Google Scholar 

  13. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    CAS  PubMed  Google Scholar 

  14. Strober W, Murray PJ, Kitani A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol. 2006;6:9–20.

    CAS  PubMed  Google Scholar 

  15. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50.

    CAS  PubMed  Google Scholar 

  16. Pham AT, Ghilardi AF, Sun L. Recent advances in the development of RIPK2 modulators for the treatment of inflammatory diseases. Front Pharmacol. 2023;14:1127722.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hofmann SR, Girschick L, Stein R, Schulze F. Immune modulating effects of receptor interacting protein 2 (RIP2) in autoinflammation and immunity. Clin Immunol. 2021;223:108648.

    CAS  PubMed  Google Scholar 

  18. Jun JC, Cominelli F, Abbott DW. RIP2 activity in inflammatory disease and implications for novel therapeutics. J Leukoc Biol. 2013;94:927–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Morris-Natschke SL, Lee KH. New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev. 2007;27:133–48.

    PubMed  Google Scholar 

  20. Xu M, Dong MQ, Cao FL, Liu ML, Wang YX, Dong HY, et al. Tanshinone IIA reduces lethality and acute lung injury in LPS-treated mice by inhibition of PLA2 activity. Eur J Pharmacol. 2009;607:194–200.

    CAS  PubMed  Google Scholar 

  21. Guo R, Li L, Su J, Li S, Duncan SE, Liu Z, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Des Devel Ther. 2020;14:4735–48.

    PubMed  PubMed Central  Google Scholar 

  22. Hao H, Wang G, Cui N, Li J, Xie L, Ding Z. Identification of a novel intestinal first pass metabolic pathway: NQO1 mediated quinone reduction and subsequent glucuronidation. Curr Drug Metab. 2007;8:137–49.

    CAS  PubMed  Google Scholar 

  23. Don MJ, Shen CC, Lin YL, Syu WJ, Ding YH, Sun CM. Nitrogen-containing compounds from Salvia miltiorrhiza. J Nat Prod. 2005;68:1066–70.

    CAS  PubMed  Google Scholar 

  24. Ding C, Chen H, Liang B, Jiao M, Liang G, Zhang A. Biomimetic synthesis of the natural product salviadione and its hybrids: discovery of tissue-specific anti-inflammatory agents for acute lung injury. Chem Sci. 2019;10:4667–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li L, Ding C, Zou C, Xiong Z, Zhu W, Qian J, et al. A novel salviadione derivative, compound 15a, attenuates diabetes-induced renal injury by inhibiting NF-kappaB-mediated inflammatory responses. Toxicol Appl Pharmacol. 2020;409:115322.

    CAS  PubMed  Google Scholar 

  26. Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12:205–17.

    PubMed  Google Scholar 

  27. Qu C, Yuan ZW, Yu XT, Huang YF, Yang GH, Chen JN, et al. Patchouli alcohol ameliorates dextran sodium sulfate-induced experimental colitis and suppresses tryptophan catabolism. Pharm Res. 2017;121:70–82.

    CAS  Google Scholar 

  28. Nielsen OH, Munck LK. Drug insight: aminosalicylates for the treatment of IBD. Nat Clin Pr Gastroenterol Hepatol. 2007;4:160–70.

    CAS  Google Scholar 

  29. Katsandegwaza B, Horsnell W, Smith K. Inflammatory bowel disease: a review of pre-clinical murine models of human disease. Int J Mol Sci. 2022;23:9344.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Honjo H, Watanabe T, Kamata K, Minaga K, Kudo M. RIPK2 as a new therapeutic target in inflammatory bowel diseases. Front Pharmacol. 2021;12:650403.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Larochelle J, Tishko RJ, Yang C, Ge Y, Phan LT, Gunraj RE, et al. Receptor-interacting protein kinase 2 (RIPK2) profoundly contributes to post-stroke neuroinflammation and behavioral deficits with microglia as unique perpetrators. J Neuroinflammation. 2023;20:221.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barnich N, Aguirre JE, Reinecker HC, Xavier R, Podolsky DK. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-kappaB activation in muramyl dipeptide recognition. J Cell Biol. 2005;170:21–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 2000;275:20520–6.

    CAS  PubMed  Google Scholar 

  34. Liu S, Kang W, Mao X, Ge L, Du H, Li J, et al. Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice. J Pineal Res. 2022;73:e12812.

    CAS  PubMed  Google Scholar 

  35. Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20:91–9.

    PubMed  PubMed Central  Google Scholar 

  36. He S, Wang X. RIP kinases as modulators of inflammation and immunity. Nat Immunol. 2018;19:912–22.

    CAS  PubMed  Google Scholar 

  37. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–51.

    CAS  PubMed  Google Scholar 

  38. Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014;41:898–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia-Carbonell R, Yao SJ, Das S, Guma M. Dysregulation of intestinal epithelial cell RIPK pathways promotes chronic inflammation in the IBD gut. Front Immunol. 2019;10:1094.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu SJ, Liu Y, Deng Y, Zhu XY, Zhan N, Dong WG. CARD3 deficiency protects against colitis through reduced epithelial cell apoptosis. Inflamm Bowel Dis. 2015;21:862–9.

    PubMed  Google Scholar 

  41. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16:90–7.

    CAS  PubMed  Google Scholar 

  42. Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16:38–51.

    CAS  PubMed  Google Scholar 

  43. Kim TW, Shin JS, Chung KS, Lee YG, Baek NI, Lee KT. Anti-inflammatory mechanisms of koreanaside A, a lignan isolated from the flower of Forsythia koreana, against LPS-induced macrophage activation and DSS-induced colitis mice: the crucial role of AP-1, NF-kappaB, and JAK/STAT signaling. Cells. 2019;8:1163.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, et al. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem. 1999;274:7611–4.

    CAS  PubMed  Google Scholar 

  45. Nakase H, Sato N, Mizuno N, Ikawa Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev. 2022;21:103017.

    CAS  PubMed  Google Scholar 

  46. Lai Y, Wang X, Sun X, Wu S, Chen X, Yang C, et al. Discovery of a novel RIPK2 inhibitor for the treatment of inflammatory bowel disease. Biochem Pharmacol. 2023;214:115647.

    CAS  PubMed  Google Scholar 

  47. Hollenbach E, Neumann M, Vieth M, Roessner A, Malfertheiner P, Naumann M. Inhibition of p38 MAP kinase- and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. FASEB J. 2004;18:1550–2.

    CAS  PubMed  Google Scholar 

  48. Fiil BK, Gyrd-Hansen M. Met1-linked ubiquitination in immune signalling. FEBS J. 2014;281:4337–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gong Q, Long Z, Zhong FL, Teo DET, Jin Y, Yin Z, et al. Structural basis of RIP2 activation and signaling. Nat Commun. 2018;9:4993.

    PubMed  PubMed Central  Google Scholar 

  50. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Nunez G, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J. 2008;27:373–83.

    CAS  PubMed  Google Scholar 

  51. Heim VJ, Dagley LF, Stafford CA, Hansen FM, Clayer E, Bankovacki A, et al. A regulatory region on RIPK2 is required for XIAP binding and NOD signaling activity. EMBO Rep. 2020;21:e50400.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Francescone R, Hou V, Grivennikov SI. Cytokines, IBD, and colitis-associated cancer. Inflamm Bowel Dis. 2015;21:409–18.

    PubMed  Google Scholar 

  53. Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14:329–42.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Scientific Research Project of Wenzhou City (ZY2021021 to YW) and the National Natural Science Foundation of China (82361138563 to YW).

Author information

Authors and Affiliations

Authors

Contributions

YW, XHW, GL and CHH contributed to the literature search and study design. YW, XHW and CHH participated in the drafting of the article. CHH, YC, TYJ, ZW, BJ, JL, CYD, AZ, WYT, LXZ, LYX and FMN carried out the experiments. YW, XHW, GL and CHH revised the manuscript. YW, XHW, GL and CHH contributed to data collection and analysis.

Corresponding authors

Correspondence to Xiao-hong Wei or Yi Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Ch., Chen, Y., Jin, Ty. et al. A derivative of tanshinone IIA and salviadione, 15a, inhibits inflammation and alleviates DSS-induced colitis in mice by direct binding and inhibition of RIPK2. Acta Pharmacol Sin 46, 672–686 (2025). https://doi.org/10.1038/s41401-024-01399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01399-1

Keywords

Search

Quick links