Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New advances in novel pharmacotherapeutic candidates for the treatment of metabolic dysfunction-associated steatohepatitis (MASH) between 2022 and 2024

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a broad spectrum of profile from simple fatty liver, evolving to metabolic dysfunction-associated steatohepatitis (MASH), to hepatic fibrosis, further progressing to cirrhosis and hepatocellular carcinoma (HCC). MASLD has become a prevalent disease with 25% in average over the world. MASH is an active stage, and requires pharmacological intervention when there is necroptotic damage with fibrotic progression. Although there is an increased understanding of MASH pathogenesis and newly approved resmetirom, given its complexity and heterogeneous pathophysiology, there is a strong necessity to develop more drug candidates with better therapeutic efficacy and well-tolerated safety profile. With an increased list of pharmaceutical candidates in the pipeline, it is anticipated to witness successful approval of more potential candidates in this fast-evolving field, thereby offering different categories of medications for selective patient populations. In this review, we update the advances in MASH pharmacotherapeutics that have completed phase II or III clinical trials with potential application in clinical practice during the latest 2 years, focusing on effectiveness and safety issues. The overview of fast-evolving status of pharmacotherapeutic candidates for MASH treatment confers deep insights into the key issues, such as molecular targets, endpoint selection and validation, clinical trial design and execution, interaction with drug administration authority, real-world data feedback and further adjustment in clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic illustration of the major modes of the potential pharmaceutical candidates in MASH or MASLD.

Similar content being viewed by others

References

  1. Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78:1966–86.

    Article  PubMed  Google Scholar 

  2. EASL-EASD-EASO. Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol. 2024; https://doi.org/10.1016/j.jhep.2024.04.031.

  3. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7:851–61.

    Article  CAS  PubMed  Google Scholar 

  4. Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med. 2017;377:2063–72.

    Article  CAS  PubMed  Google Scholar 

  5. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397–411.

    Article  CAS  PubMed  Google Scholar 

  6. Zhai M, Liu Z, Long J, Zhou Q, Yang L, Zhou Q, et al. The incidence trends of liver cirrhosis caused by nonalcoholic steatohepatitis via the GBD study 2017. Sci Rep. 2021;11:5195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Myers S, Neyroud-Caspar I, Spahr L, Gkouvatsos K, Fournier E, Giostra E, et al. NAFLD and MAFLD as emerging causes of HCC: A populational study. JHEP Rep. 2021;3:100231.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang FS, Fan JG, Zhang Z, Gao B, Wang HY. The global burden of liver disease: the major impact of China. Hepatology. 2014;60:2099–108.

    Article  PubMed  Google Scholar 

  9. Zhou F, Zhou J, Wang W, Zhang XJ, Ji YX, Zhang P, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: a systematic review and meta-analysis. Hepatology. 2019;70:1119–33.

    Article  PubMed  Google Scholar 

  10. Man S, Deng Y, Ma Y, Fu J, Bao H, Yu C, et al. Prevalence of liver steatosis and fibrosis in the general population and various high-risk populations: a nationwide study with 5.7 million adults in China. Gastroenterology. 2023;165:1025–40.

    Article  PubMed  Google Scholar 

  11. Liu H, Qi J, Yang J, Liu F, Li X, Yin P, et al. Burden of liver complications related to non-alcoholic fatty liver disease in China from 2005 to 2019: observations from the global burden of disease study, 2019. Diabetes Obes Metab. 2023;25:43–52.

    Article  CAS  PubMed  Google Scholar 

  12. Brunt EM, Wong VWS, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Prim. 2015;1:15080.

    Article  PubMed  Google Scholar 

  13. Noureddin M, Muthiah MD, Sanyal AJ. Drug discovery and treatment paradigms in nonalcoholic steatohepatitis. Endocrinol Diabetes Metab. 2020;3:e00105.

    Article  PubMed  Google Scholar 

  14. Harrison SA, Bedossa P, Guy CD, Schattenberg JM, Loomba R, Taub R, et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med. 2024;390:497–509.

    Article  PubMed  Google Scholar 

  15. Kingwell K. NASH field celebrates ‘hurrah moment’ with a first FDA drug approval for the liver disease. Nat Rev Drug Discov. 2024;23:235–7.

    Article  CAS  PubMed  Google Scholar 

  16. Yang YY, Xie L, Zhang NP, Zhou D, Liu TT, Wu J. Updates on novel pharmacotherapeutics for the treatment of nonalcoholic steatohepatitis. Acta Pharmacol Sin. 2022;43:1180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sinha RA, Bruinstroop E, Singh BK, Yen PM. Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists. Thyroid. 2019;29:1173–91.

    Article  CAS  PubMed  Google Scholar 

  18. Mendoza A, Tang C, Choi J, Acuna M, Logan M, Martin AG, et al. Thyroid hormone signaling promotes hepatic lipogenesis through the transcription factor ChREBP. Sci Signal. 2021;14:eabh3839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taub R, Chiang E, Chabot-Blanchet M, Kelly MJ, Reeves RA, Guertin MC, et al. Lipid lowering in healthy volunteers treated with multiple doses of MGL-3196, a liver-targeted thyroid hormone receptor-β agonist. Atherosclerosis. 2013;230:373–80.

    Article  CAS  PubMed  Google Scholar 

  20. Kelly MJ, Pietranico-Cole S, Larigan JD, Haynes NE, Reynolds CH, Scott N. et al.Discovery of 2-[3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yloxy)phenyl]-3,5-dioxo-2,3,4,5-tetrahydro[1,2,4]triazine-6-carbonitrile (MGL-3196), a highly selective thyroid hormone receptor β agonist in clinical trials for the treatment of dyslipidemia.J Med Chem. 2014;57:3912–23.

    Article  CAS  PubMed  Google Scholar 

  21. Harrison SA, Bashir MR, Guy CD, Zhou R, Moylan CA, Frias JP, et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2019;394:2012–24.

    Article  CAS  PubMed  Google Scholar 

  22. Harrison SA, Taub R, Neff GW, Lucas KJ, Labriola D, Moussa SE, et al. Resmetirom for nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med. 2023;29:2919–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harrison SA, Taub RA, Ren Y-Y, Chng ELK, Tai D. Artificial intelligence to measure fibrosis change on liver biopsy in MAESTRO-MASH: a phase 3 serial liver biopsy study in 966 patients with MASH treated with resmetirom or placebo. Hepatology. 2023;78:S143–5.

    Google Scholar 

  24. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes. 2008;57:2280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holst JJ, Toft-Nielsen MB, Orskov C, Nauck M, Willms B. On the effects of glucagon-like peptide-1 on blood glucose regulation in normal and diabetic subjects. Ann N Y Acad Sci. 1996;805:729–36.

    Article  CAS  PubMed  Google Scholar 

  26. Shah M, Vella A. Effects of GLP-1 on appetite and weight. Rev Endocr Metab Disord. 2014;15:181–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf. 2021;20:5173–96.

    Article  CAS  PubMed  Google Scholar 

  28. Newsome PN, Ambery P. Incretins (GLP-1 receptor agonists and dual/triple agonists) and the liver. J Hepatol. 2023;79:1557–65.

    Article  CAS  PubMed  Google Scholar 

  29. Sorli C, Harashima SI, Tsoukas GM, Unger J, Karsbøl JD, Hansen T, et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017;5:251–60.

    Article  CAS  PubMed  Google Scholar 

  30. Ahrén B, Masmiquel L, Kumar H, Sargin M, Karsbøl JD, Jacobsen SH, et al. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): a 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol. 2017;5:341–54.

    Article  PubMed  Google Scholar 

  31. Ahmann AJ, Capehorn M, Charpentier G, Dotta F, Henkel E, Lingvay I, et al. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): a 56-week, open-label, randomized clinical trial. Diabetes Care. 2018;41:258–66.

    Article  CAS  PubMed  Google Scholar 

  32. Aroda VR, Bain SC, Cariou B, Piletič M, Rose L, Axelsen M, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017;5:355–66.

    Article  CAS  PubMed  Google Scholar 

  33. Rodbard HW, Lingvay I, Reed J, de la Rosa R, Rose L, Sugimoto D, et al. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): a randomized, controlled trial. J Clin Endocrinol Metab. 2018;103:2291–301.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jódar E, Michelsen M, Polonsky W, Réa R, Sandberg A, Vilsbøll T, et al. Semaglutide improves health-related quality of life versus placebo when added to standard of care in patients with type 2 diabetes at high cardiovascular risk (SUSTAIN 6). Diabetes Obes Metab. 2020;22:1339–47.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384:989–1002.

    Article  CAS  PubMed  Google Scholar 

  36. Davies M, Færch L, Jeppesen OK, Pakseresht A, Pedersen SD, Perreault L, et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet. 2021;397:971–84.

    Article  CAS  PubMed  Google Scholar 

  37. Wadden TA, Bailey TS, Billings LK, Davies M, Frias JP, Koroleva A, et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA. 2021;325:1403–13.

    Article  CAS  PubMed  Google Scholar 

  38. Rubino D, Abrahamsson N, Davies M, Hesse D, Greenway FL, Jensen C, et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA. 2021;325:1414–25.

    Article  CAS  PubMed  Google Scholar 

  39. Wester A, Shang Y, Toresson Grip E, Matthews AA, Hagstrom H. Glucagon-like peptide-1 receptor agonists and risk of major adverse liver outcomes in patients with chronic liver disease and type 2 diabetes. Gut. 2024;73:835–43.

    Article  CAS  PubMed  Google Scholar 

  40. Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, Ratziu V, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021;384:1113–24.

    Article  CAS  PubMed  Google Scholar 

  41. Ratziu V, Patel AS, Krarup NM, Varma S, Noureddin M, Sanyal A. Digital image quantification of the antifibrotic effect of semaglutide and the impact of liver fat in nonalcoholic steatohepatitis. Hepatology. 2023;78:S148–50.

    Google Scholar 

  42. Loomba R, Abdelmalek MF, Armstrong MJ, Jara M, Kjær MS, Krarup N, et al. Semaglutide 2·4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: a randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol Hepatol. 2023;8:511–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Romero-Gomez M, Lawitz E, Shankar RR, Chaudhri E, Liu J, Lam RLH, et al. A phase IIa active-comparator-controlled study to evaluate the efficacy and safety of efinopegdutide in patients with non-alcoholic fatty liver disease. J Hepatol. 2023;79:888–97.

    Article  CAS  PubMed  Google Scholar 

  44. Rosenstock J, Wysham C, Frías JP, Kaneko S, Lee CJ, Fernández Landó L, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet. 2021;398:143–55.

    Article  CAS  PubMed  Google Scholar 

  45. Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387:205–16.

    Article  CAS  PubMed  Google Scholar 

  46. Garvey WT, Frias JP, Jastreboff AM, le Roux CW, Sattar N, Aizenberg D, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2023;402:613–26.

    Article  CAS  PubMed  Google Scholar 

  47. Loomba R, Hartman ML, Lawitz EJ, Vuppalanchi R, Boursier J, Bugianesi E, et al. Tirzepatide for metabolic dysfunction-associated steatohepatitis with liver fibrosis. N Engl J Med. 2024;391:299–310.

    Article  CAS  PubMed  Google Scholar 

  48. Boland ML, Laker RC, Mather K, Nawrocki A, Oldham S, Boland BB, et al. Resolution of NASH and hepatic fibrosis by the GLP-1R/GcgR dual-agonist cotadutide via modulating mitochondrial function and lipogenesis. Nat Metab. 2020;2:413–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385:503–15.

    Article  PubMed  Google Scholar 

  50. Sanyal A, Frias JP, Thomas MK, Mather KJ, Wu QW, Du Y, et al. Triple hormone receptor agonist retatrutide resolves steatosis in > 85% of subjects with MASLD and obesity in association with improved metabolic health. Hepatology. 2023;78:S154–5.

    Google Scholar 

  51. Jastreboff AM, Kaplan LM, Frías JP, Wu Q, Du Y, Gurbuz S, et al. Triple-hormone-receptor agonist retatrutide for obesity - a phase 2 trial. N Engl J Med. 2023;389:514–26.

    Article  CAS  PubMed  Google Scholar 

  52. Coskun T, Urva S, Roell WC, Qu H, Loghin C, Moyers JS, et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: from discovery to clinical proof of concept. Cell Metab. 2022;34:1234–47. e9

    Article  CAS  PubMed  Google Scholar 

  53. Sodhi M, Rezaeianzadeh R, Kezouh A, Etminan M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA. 2023;330:1795–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kliewer SA, Mangelsdorf DJ. Bile acids as hormones: the FXR-FGF15/19 pathway. Dig Dis. 2015;33:327–31.

    Article  PubMed  Google Scholar 

  55. Harrison SA, Neff G, Guy CD, Bashir MR, Paredes AH, Frias JP, et al. Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology. 2021;160:219–31. e1

    Article  CAS  PubMed  Google Scholar 

  56. Luo J, Ko B, Elliott M, Zhou M, Lindhout DA, Phung V, et al. A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med. 2014;6:247ra100.

    Article  PubMed  Google Scholar 

  57. Lan T, Morgan DA, Rahmouni K, Sonoda J, Fu X, Burgess SC, et al. FGF19, FGF21, and an FGFR1/beta-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 2017;26:709–18. e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harrison SA, Abdelmalek MF, Neff G, Gunn N, Guy CD, Alkhouri N, et al. Aldafermin in patients with non-alcoholic steatohepatitis (ALPINE 2/3): a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Gastroenterol Hepatol. 2022;7:603–16.

    Article  CAS  PubMed  Google Scholar 

  59. Rinella ME, Lieu HD, Kowdley KV, Goodman ZD, Alkhouri N, Lawitz E, et al. A randomized, double-blind, placebo-controlled trial of aldafermin in patients with NASH and compensated cirrhosis. Hepatology. 2024;79:674–89.

    Article  PubMed  Google Scholar 

  60. BonDurant LD, Potthoff MJ. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu Rev Nutr. 2018;38:173–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harrison SA, Ruane PJ, Freilich BL, Neff G, Patil R, Behling CA, et al. Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nat Med. 2021;27:1262–71.

    Article  CAS  PubMed  Google Scholar 

  62. Szczepanska E, Gietka-Czernel M. FGF21: A novel regulator of glucose and lipid metabolism and whole-body energy balance. Horm Metab Res. 2022;54:203–11.

    Article  CAS  PubMed  Google Scholar 

  63. Harrison SA, Frias JP, Neff G, Abrams GA, Lucas KJ, Sanchez W, et al. Safety and efficacy of once-weekly efruxifermin versus placebo in non-alcoholic steatohepatitis (HARMONY): a multicentre, randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Gastroenterol Hepatol. 2023;8:1080–93.

    Article  CAS  PubMed  Google Scholar 

  64. Harrison SA, Frias JP, Neff G, Abrams G, Lucas KJ, Sanchez W, et al. LBO-002 Efruxifermin significantly reduced liver fibrosis in MASH patients with F2-F3 fibrosis, with sustained improvement in liver injury and resolution of steatohepatitis over 96 weeks (HARMONY phase 2b study). J Hepatol. 2024;80:S8.

    Article  Google Scholar 

  65. Harrison SA. Efruxifermin in compensated cirrhosis due to NASH/MASH: results from a randomized, double-blind, placebo-controlled, phase 2b trial (SYMMETRY). 2023; https://www.natap.org/2023/AASLD/AASLD_104.htm.

  66. Harrison SA, Neff GW, Lucas KJ, Rodriguez M, Wofford S, Benun J, et al. Efruxifermin in compensated cirrhosis due to NASH/MASH: results from a randomized, double-blind, placebo-controlled, phase 2b trial (SYMMETRY). Hepatology. 2024;79:E37–9.

    Article  Google Scholar 

  67. Loomba R, Sanyal AJ, Kowdley KV, Bhatt DL, Alkhouri N, Frias JP, et al. Randomized, controlled trial of the FGF21 analogue pegozafermin in NASH. N Engl J Med. 2023;389:998–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Loomba R, Sanyal A, Kowdley KV, Bhatt DL, Alkhouri N, Frias JP, et al. Fibrosis improvement with pegozafermin treatment in MASH patients with F4 fibrosis: analysis from a 24-week randomized, double-blind, placebo-controlled phase 2 trial (ENLIVEN). Hepatology. 2023;78:S3–8.

    Google Scholar 

  69. Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci USA. 2012;109:3143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim AM, Somayaji VR, Dong JQ, Rolph TP, Weng Y, Chabot JR, et al. Once-weekly administration of a long-acting fibroblast growth factor 21 analogue modulates lipids, bone turnover markers, blood pressure and body weight differently in obese people with hypertriglyceridaemia and in non-human primates. Diabetes Obes Metab. 2017;19:1762–72.

    Article  CAS  PubMed  Google Scholar 

  71. Neuschwander-Tetri BA. Farnesoid X receptor agonists: what they are and how they might be used in treating liver disease. Curr Gastroenterol Rep. 2012;14:55–62.

    Article  PubMed  Google Scholar 

  72. Jiang L, Zhang H, Xiao D, Wei H, Chen Y. Farnesoid X receptor (FXR): structures and ligands. Comput Struct Biotechnol J. 2021;19:2148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394:2184–96.

    Article  CAS  PubMed  Google Scholar 

  74. Sanyal AJ, Ratziu V, Loomba R, Anstee QM, Kowdley KV, Rinella ME, et al. Results from a new efficacy and safety analysis of the REGENERATE trial of obeticholic acid for treatment of pre-cirrhotic fibrosis due to non-alcoholic steatohepatitis. J Hepatol. 2023;79:1110–20.

    Article  CAS  PubMed  Google Scholar 

  75. Harrison SA, Gunn N, Neff GW, Kohli A, Liu L, Flyer A, et al. A phase 2, proof of concept, randomised controlled trial of berberine ursodeoxycholate in patients with presumed non-alcoholic steatohepatitis and type 2 diabetes. Nat Commun. 2021;12:5503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Santos VN, Lanzoni VP, Szejnfeld J, Shigueoka D, Parise ER. A randomized double-blind study of the short-time treatment of obese patients with nonalcoholic fatty liver disease with ursodeoxycholic acid. Braz J Med Biol Res. 2003;36:723–9.

    Article  CAS  PubMed  Google Scholar 

  77. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004;10:1344–51.

    Article  CAS  PubMed  Google Scholar 

  78. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism. 2008;57:712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ratziu V, de Ledinghen V, Oberti F, Mathurin P, Wartelle-Bladou C, Renou C, et al. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol. 2011;54:1011–9.

    Article  CAS  PubMed  Google Scholar 

  80. Harrison SA, Gunn N, Neff GW, Flyer A, Liberman A, MacConell L. Improvements in liver fibroinflammation (as assessed by corrected T1 [cT1]) with HTD1801 (berberine ursodeoxycholate) treatment in patients with non-alcoholic steatohepatitis and type 2 diabetes mellitus. J Hepatol. 2023;78:S653–4.

    Article  Google Scholar 

  81. Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and disease. Physiol Rev. 2020;100:171–210.

    Article  CAS  PubMed  Google Scholar 

  82. Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M. Free fatty acid receptors as mediators and therapeutic targets in liver disease. Front Physiol. 2021;12:656441.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jin C, Chen H, Xie L, Zhou Y, Liu LL, Wu J. GPCRs involved in metabolic diseases: pharmacotherapeutic development updates. Acta Pharmacol Sin. 2024;45:1321–36.

    Article  CAS  PubMed  Google Scholar 

  84. Fraser DA, Harrison SA, Schuppan D. Icosabutate: targeting metabolic and inflammatory pathways for the treatment of NASH. Expert Opin Investig Drugs. 2022;31:1269–78.

    Article  CAS  PubMed  Google Scholar 

  85. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tunaru S, Bonnavion R, Brandenburger I, Preussner J, Thomas D, Scholich K, et al. 20-HETE promotes glucose-stimulated insulin secretion in an autocrine manner through FFAR1. Nat Commun. 2018;9:177.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fraser DA, Wang X, Lund J, Nikolic N, Iruarrizaga-Lejarreta M, Skjaeret T, et al. A structurally engineered fatty acid, icosabutate, suppresses liver inflammation and fibrosis in NASH. J Hepatol. 2022;76:800–11.

    Article  CAS  PubMed  Google Scholar 

  88. Harrison SA, Alkhouri N, Benun J, Ortiz-Lasanta G, Rudraraju M, Steineger HH, et al. Icosabutate in NASH/MASH with fibrosis: results from a randomised, multicentre, double-blind, placebo controlled, phase 2b trial (ICONA). Hepatology. 2024;79:E44–5.

    Google Scholar 

  89. Lacy BE, Levy LC. Lubiprostone: a chloride channel activator. J Clin Gastroenterol. 2007;41:345–51.

    Article  CAS  PubMed  Google Scholar 

  90. Kessoku T, Kobayashi T, Imajo K, Tanaka K, Yamamoto A, Takahashi K, et al. Endotoxins and non-alcoholic fatty liver disease. Front Endocrinol. 2021;12:770986.

    Article  Google Scholar 

  91. Kim MY, Lee SJ, Randolph G, Han YH. Lubiprostone significantly represses fatty liver diseases via induction of mucin and HDL release in mice. Life Sci. 2022;311:121176.

    Article  CAS  PubMed  Google Scholar 

  92. El-Kassas M, Liu HQ, Lee SS. Lubiprostone reduces fat content on MRI-PDFF in patients with MASLD. Hepatology. 2023;78:S152.

    Google Scholar 

  93. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038–48.

    Article  CAS  PubMed  Google Scholar 

  94. Noureddin M, Alkhouri N, Lawitz E, Kowdley KV, Loomba R, Sanchez W, et al. Topline results from a 12-week phase 2a trial (DUET) evaluating TERN-501, a highly selective thyroid hormone receptor (THR) beta agonist, either as monotherapy or in combination with TERN-101, a nonsteroidal farnesoid X receptor (FXR) agonist, demonstrated significant reductions in MR-based liver fat content and fibro-inflammation in patients with presumed MASH. Hepatology. 2024;79:E33.

    Google Scholar 

  95. Chinese Society of Hepatology, Chinese Medical Association. [Guidelines for the prevention and treatment of metabolic dysfunction-associated (non-alcoholic) fatty liver disease (Version 2024)].Zhonghua Gan Zang Bing Za Zhi. 2024;32:418–34.

    Google Scholar 

  96. Zou H, Ge Y, Lei Q, Ung COL, Ruan Z, Lai Y, et al. Epidemiology and disease burden of non-alcoholic steatohepatitis in greater China: a systematic review. Hepatol Int. 2022;16:27–37.

    Article  PubMed  Google Scholar 

  97. Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001;40:539–51.

    Article  CAS  PubMed  Google Scholar 

  98. Qi J, Guo Z, Zhu S, Jiang X, Wu Y, Chen Y, et al. Therapeutic effect of long-acting FGF21 with controlled site-specific modification on nonalcoholic steatohepatitis. Int J Biol Macromol. 2024;261:129797.

    Article  CAS  PubMed  Google Scholar 

  99. Teufel A, Itzel T, Erhart W, Brosch M, Wang XY, Kim YO, et al. Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology. 2016;151:513–25.e0.

    Article  CAS  PubMed  Google Scholar 

  100. McLaren DG, Han S, Murphy BA, Wilsie L, Stout SJ, Zhou H, et al. DGAT2 inhibition alters aspects of triglyceride metabolism in rodents but not in non-human primates. Cell Metab. 2018;27:1236–48.e6.

    Article  CAS  PubMed  Google Scholar 

  101. Vali Y, Lee J, Boursier J, Petta S, Wonders K, Tiniakos D, et al. Biomarkers for staging fibrosis and non-alcoholic steatohepatitis in non-alcoholic fatty liver disease (the LITMUS project): a comparative diagnostic accuracy study. Lancet Gastroenterol Hepatol. 2023;8:714–25.

    Article  CAS  PubMed  Google Scholar 

  102. Shah A, MacConell L, Shapiro D. Histologic endpoints in NASH clinical trials: the emperor has no clothes. Hepatology. 2022;76:S96–7.

    Google Scholar 

  103. Mangia A, Loomba R, Schattenberg J, Taub R, Labriola D, Noureddin M, et al. Relationship of non-invasive measures with histological response in patients with nonalcoholic steatohepatitis and fibrosis: 52-week data from the phase 3 MAESTRO-NASH trial. Dig Liver Dis. 2024;56:S14.

    Article  Google Scholar 

  104. Keating SE, Chawla Y, De A, George ES. Lifestyle intervention for metabolic dysfunction-associated fatty liver disease: a 24-h integrated behavior perspective. Hepatol Int. 2024; https://doi.org/10.1007/s12072-024-10663-9.

Download references

Acknowledgements

The work is supported partially by the National Natural Science Foundation of China (NSFC #82370625, 82170624).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning-ping Zhang or Jian Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, S.W., Yang, Yy., Chen, H. et al. New advances in novel pharmacotherapeutic candidates for the treatment of metabolic dysfunction-associated steatohepatitis (MASH) between 2022 and 2024. Acta Pharmacol Sin 46, 1145–1155 (2025). https://doi.org/10.1038/s41401-024-01466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-024-01466-7

Keywords

This article is cited by

Search

Quick links