Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural compound PEITC inhibits gain of function of p53 mutants in cancer cells by switching YAP-binding partners between p53 and p73

Abstract

Phenethyl isothiocyanate (PEITC) derived from cruciferous vegetables has shown anticancer activities by modulating apoptosis, cell cycle arrest, drug-metabolizing enzymes and even preferentially restoring a ‘WT-like’ conformation to p53R175H. But its molecular anti-cancer mechanisms are not well understood. Evidence shows that switching YAP-binding partners from pro-tumorigenic to pro-apoptotic proteins might hold great potential for the treatment of human cancers harboring mtp53. In this study we investigated the impact of PEITC on mtp53-YAP-p73 interaction in cancers harboring a variety of p53 mutants, but not limited to structural mutations. We showed that breast cancer, colorectal and lung cancer cells harboring mtp53 (p53R280K, p53R273H) were more sensitive to PEITC than those cells harboring wtp53. We demonstrated that PEITC bound to YAP at its WW binding domain, and induced a conformational change, facilitated the dissociation of YAP-mtp53 complex and inhibited their pro-proliferative transcriptional activity in different cancer cells harboring mtp53. Concomitantly, PEITC acted as a molecular glue to enhance the association of YAP-p73 complex and induced apoptosis. These results provide insights into the anticancer activity of PEITC against a wide spectrum of cancers and highlight a unique mode of action for PEITC-based cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cancer cells harboring mtp53 are more sensitive to PEITC than those harboring wtp53.
Fig. 2: Cancer cells harboring mtp53 are more susceptible to PEITC-induced apoptosis than those harboring wtp53.
Fig. 3: PEITC binds YAP at its WW domain.
Fig. 4: PEITC facilitates dissociation of the YAP-mtp53 complex.
Fig. 5: PEITC promotes association of the YAP-p73 complex.
Fig. 6: PEITC acts a molecular glue to facilitate association of the YAP-p73 complex.

Similar content being viewed by others

Data availability

Data generated in this study are available upon reasonable request from the corresponding authors.

References

  1. Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25:154–60.

    Article  CAS  PubMed  Google Scholar 

  2. Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20:471–80.

    Article  CAS  PubMed  Google Scholar 

  3. Bargonetti J, Prives C. Gain-of-function mutant p53: history and speculation. J Mol Cell Biol. 2019;11:605–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 2023;22:127–44.

    Article  CAS  PubMed  Google Scholar 

  5. Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer. 2024;24:192–215.

    Article  CAS  PubMed  Google Scholar 

  6. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018;18:89–102.

    Article  CAS  PubMed  Google Scholar 

  7. Durairaj G, Demir O, Lim B, Baronio R, Tifrea D, Hall LV, et al. Discovery of compounds that reactivate p53 mutants in vitro and in vivo. Cell Chem Biol. 2022;29:1381–95.e13

    Article  CAS  PubMed  Google Scholar 

  8. Ferraiuolo M, Verduci L, Blandino G, Strano S. Mutant p53 protein and the Hippo transducers YAP and TAZ: a critical oncogenic node in human cancers. Int J Mol Sci. 2017;18:961.

  9. Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P, Giorgi C. An updated understanding of the role of YAP in driving oncogenic responses. Cancers. 2021;13:3100.

  10. Downward J, Basu S. YAP and p73: a complex affair. Mol Cell. 2008;32:749–50.

    Article  CAS  PubMed  Google Scholar 

  11. Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell. 2008;29:350–61.

    Article  CAS  PubMed  Google Scholar 

  12. Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell. 2007;27:962–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Escoll M, Gargini R, Cuadrado A, Anton IM, Wandosell F. Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene. 2017;36:3515–27.

    Article  CAS  PubMed  Google Scholar 

  14. Di Agostino S, Sorrentino G, Ingallina E, Valenti F, Ferraiuolo M, Bicciato S, et al. YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins. EMBO Rep. 2016;17:188–201.

    Article  PubMed  Google Scholar 

  15. Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L, et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem. 2000;275:29503–12.

    Article  CAS  PubMed  Google Scholar 

  16. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 2001;21:1874–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S, et al. Role of phytochemicals in cancer prevention. Int J Mol Sci. 2019;20:4981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ioannides C, Konsue N. A principal mechanism for the cancer chemopreventive activity of phenethyl isothiocyanate is modulation of carcinogen metabolism. Drug Metab Rev. 2015;47:356–73.

    Article  CAS  PubMed  Google Scholar 

  19. M Ezzat S, M Merghany R, M Abdel Baki P, Ali Abdelrahim N, M Osman S, A Salem M, et al. Nutritional sources and anticancer potential of phenethyl isothiocyanate: molecular mechanisms and therapeutic insights. Mol Nutr Food Res. 2024;68:e2400063.

    Article  PubMed  Google Scholar 

  20. Aggarwal M, Saxena R, Sinclair E, Fu Y, Jacobs A, Dyba M, et al. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth. Cell Death Differ. 2016;23:1615–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeh YT, Yeh H, Su SH, Lin JS, Lee KJ, Shyu HW, et al. Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations. Free Radic Biol Med. 2014;74:1–13.

    Article  CAS  PubMed  Google Scholar 

  22. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10:241–52.

    Article  CAS  PubMed  Google Scholar 

  23. Elgehama A, Wang Y, Yu Y, Zhou L, Chen Z, Wang L, et al. Targeting the PTP1B-Bcr-Abl1 interaction for the degradation of T315I mutant Bcr-Abl1 in chronic myeloid leukemia. Cancer Sci. 2023;114:247–58.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Gao J, Yu Y, Zhou L, Wang M, Xue W, et al. A plant-derived glucocorticoid receptor modulator with potency to attenuate the side effects of glucocorticoid therapy. Br J Pharmacol. 2023;180:194–213.

    Article  CAS  PubMed  Google Scholar 

  25. Aggarwal M, Saxena R, Asif N, Sinclair E, Tan J, Cruz I, et al. p53 mutant-type in human prostate cancer cells determines the sensitivity to phenethyl isothiocyanate induced growth inhibition. J Exp Clin Cancer Res. 2019;38:307.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, et al. 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997;1:3–11.

    Article  CAS  PubMed  Google Scholar 

  27. Sun HL, Men JR, Liu HY, Liu MY, Zhang HS. FOXM1 facilitates breast cancer cell stemness and migration in YAP1-dependent manner. Arch Biochem Biophys. 2020;685:108349.

    Article  CAS  PubMed  Google Scholar 

  28. Chapeau EA, Sansregret L, Galli GG, Chene P, Wartmann M, Mourikis TP, et al. Direct and selective pharmacological disruption of the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and RAS-MAPK-altered cancers. Nat Cancer. 2024;5:1102–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem. 2001;276:15164–73.

    Article  CAS  PubMed  Google Scholar 

  30. Reggiani F, Gobbi G, Ciarrocchi A, Sancisi V. YAP and TAZ are not identical twins. Trends Biochem Sci. 2021;46:154–68.

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Di Pasqua AJ, Govind S, McCracken E, Hong C, Mi L, et al. Selective depletion of mutant p53 by cancer chemopreventive isothiocyanates and their structure-activity relationships. J Med Chem. 2011;54:809–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jang W, Kim T, Koo JS, Kim SK, Lim DS. Mechanical cue-induced YAP instructs Skp2-dependent cell cycle exit and oncogenic signaling. EMBO J. 2017;36:2510–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang HT, Gui T, Liu RX, Tong KL, Wu CJ, Li Z, et al. Sequential targeting of YAP1 and p21 enhances the elimination of senescent cells induced by the BET inhibitor JQ1. Cell Death Dis. 2021;12:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jang JW, Kim MK, Lee YS, Lee JW, Kim DM, Song SH, et al. RAC-LATS1/2 signaling regulates YAP activity by switching between the YAP-binding partners TEAD4 and RUNX3. Oncogene. 2017;36:999–1011.

    Article  CAS  PubMed  Google Scholar 

  35. Dewey JA, Delalande C, Azizi SA, Lu V, Antonopoulos D, Babnigg G. Molecular glue discovery: current and future approaches. J Med Chem. 2023;66:9278–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schreiber SL. The rise of molecular glues. Cell. 2021;184:3–9.

    Article  CAS  PubMed  Google Scholar 

  37. Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol. 2011;7:285–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dian-hua Chen (School of Life Sciences, Nanjing University) for technological assistance.

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 81974504, 82230116), National Key R&D Program of China (Grant No. 2022YFC3500202), and Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (Grant No. ZYYCXTD-C-202208).

Author information

Authors and Affiliations

Authors

Contributions

YS and QX designed this study; YXW, LWW, YH, LZ and GYL performed research; YXW, LWW, JWY analyzed data; JCC and XFW contributed to the discussion; YXW, LWW and YS wrote the manuscript.

Corresponding authors

Correspondence to Jing-cai Cheng, Qiang Xu or Yan Shen.

Ethics declarations

Competing interests

Jing-cai Cheng was in  Drug R&D Institute, JC (Wuxi) Company Inc. He declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yx., Wang, Lw., Huang, Y. et al. Natural compound PEITC inhibits gain of function of p53 mutants in cancer cells by switching YAP-binding partners between p53 and p73. Acta Pharmacol Sin 46, 1722–1732 (2025). https://doi.org/10.1038/s41401-025-01474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01474-1

Keywords

Search

Quick links