Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dorsal raphe GABA-ergic neurons regulate the susceptibility to social transfer of pain in mice

Abstract

Some individuals are more susceptible to developing or suffering from pain states than others. However, the brain mechanisms underlying the susceptibility to pain responses are unknown. In this study, we defined pain susceptibility by recapitulating inter-individual differences in pain responses in mice exposed to a paradigm of socially transferred allodynia (STA), and with a combination of chemogenetic, molecular, pharmacological and electrophysiological approaches, we identified GABA-ergic neurons in the dorsal raphe nucleus (DRN) as a cellular target for the development and maintenance of STA susceptibility. We showed that DRN GABA-ergic neurons were selectively activated in STA-susceptible mice when compared with the unsusceptible (resilient) or control mice. Chemogenetic activation of DRN GABA-ergic neurons promoted STA susceptibility; whereas inhibiting these neurons prevented the development of STA susceptibility and reversed established STA. In in vitro slice electrophysiological analysis, we demonstrated that melanocortin 4 receptor (MC4R) enriched in DRN GABA-ergic neurons was a molecular target for regulating pain susceptibility, possibly by affecting DRN GABA-ergic neuronal activity. These results establish the DRN GABA-ergic neurons as an essential target for controlling pain susceptibility, thus providing important information for developing conceptually innovative and more accurate analgesic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behavioral signature of STA susceptibility.
Fig. 2: DRN GABA-ergic neurons are selectively activated in the susceptible mice.
Fig. 3: Activation of DRN GABA-ergic neurons promotes susceptibility to socially transferred allodynia.
Fig. 4: Inhibition of DRN GABA-ergic neurons promotes resilience to socially transferred allodynia.
Fig. 5: Pharmacological manipulation of MC4R bi-directionally regulates DRN GABA-ergic neuron activity.
Fig. 6: α-MSH in the DRN promotes resilience to socially transferred allodynia.
Fig. 7: HS014 in the DRN promotes susceptibility to socially transferred allodynia.
Fig. 8: Inter-individual differences in social transfer of pain: the functional role of DRN GABA-ergic neuron and its underlying molecular mechanism.

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain. 2020;161:1976–82.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nestler EJ, Waxman SG. Resilience to stress and resilience to pain: lessons from molecular neurobiology and genetics. Trends Mol Med. 2020;26:924–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mogil JS. Sources of individual differences in pain. Annu Rev Neurosci. 2021;44:1–25.

    Article  CAS  PubMed  Google Scholar 

  4. Khan HS, Stroman PW. Inter-individual differences in pain processing investigated by functional magnetic resonance imaging of the brainstem and spinal cord. Neuroscience. 2015;307:231–41.

    Article  CAS  PubMed  Google Scholar 

  5. Fillingim RB. Individual differences in pain responses. Curr Rheumatol Rep. 2005;7:342–7.

    Article  PubMed  Google Scholar 

  6. McDonnell A, Schulman B, Ali Z, Dib-Hajj SD, Brock F, Cobain S, et al. Inherited erythromelalgia due to mutations in SCN9A: natural history, clinical phenotype and somatosensory profile. Brain. 2016;139:1052–65.

    Article  PubMed  Google Scholar 

  7. Geha P, Yang Y, Estacion M, Schulman BR, Tokuno H, Apkarian AV, et al. Pharmacotherapy for pain in a family with inherited erythromelalgia guided by genomic analysis and functional profiling. JAMA Neurol. 2016;73:659–67.

    Article  PubMed  Google Scholar 

  8. Mis MA, Yang Y, Tanaka BS, Gomis-Perez C, Liu S, Dib-Hajj F, et al. Resilience to pain: a peripheral component identified using induced pluripotent stem cells and dynamic clamp. J Neurosci. 2019;39:382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du X, Hao H, Gigout S, Huang D, Yang Y, Li L, et al. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission. Pain. 2014;155:2306–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, et al. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci. 2003;23:7227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang H, Qian YL, Li C, Liu D, Wang L, Wang XY, et al. Brain-derived neurotrophic factor in the mesolimbic reward circuitry mediates nociception in chronic neuropathic pain. Biol Psychiatry. 2017;82:608–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou W, Ye C, Wang H, Mao Y, Zhang W, Liu A, et al. Sound induces analgesia through corticothalamic circuits. Science. 2022;377:198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou W, Jin Y, Meng Q, Zhu X, Bai T, Tian Y, et al. A neural circuit for comorbid depressive symptoms in chronic pain. Nat Neurosci. 2019;22:1649–58.

    Article  CAS  PubMed  Google Scholar 

  14. Wang K, Donnelly CR, Jiang C, Liao Y, Luo X, Tao X, et al. STING suppresses bone cancer pain via immune and neuronal modulation. Nat Commun. 2021;12:4558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith ML, Asada N, Malenka RC. Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science. 2021;371:153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Z, Lu YF, Li CL, Wang Y, Sun W, He T, et al. Social interaction with a cagemate in pain facilitates subsequent spinal nociception via activation of the medial prefrontal cortex in rats. Pain. 2014;155:1253–61.

    Article  PubMed  Google Scholar 

  17. Smith ML, Hostetler CM, Heinricher MM, Ryabinin AE. Social transfer of pain in mice. Sci Adv. 2016;2:e1600855.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith ML, Walcott AT, Heinricher MM, Ryabinin AE. Anterior cingulate cortex contributes to alcohol withdrawal- induced and socially transferred hyperalgesia. eNeuro. 2017;4:ENEURO.0087-17.2017.

  19. Lu YF, Ren B, Ling BF, Zhang J, Xu C, Li Z. Social interaction with a cagemate in pain increases allogrooming and induces pain hypersensitivity in the observer rats. Neurosci Lett. 2018;662:385–8.

    Article  CAS  PubMed  Google Scholar 

  20. Han Y, Ai L, Sha S, Zhou J, Fu H, Sun C, et al. The functional role of the visual and olfactory modalities in the development of socially transferred mechanical hypersensitivity in male C57BL/6J mice. Physiol Behav. 2024;277:114499.

    Article  CAS  PubMed  Google Scholar 

  21. Han Y, Ai L, Song L, Zhou Y, Chen D, Sha S, et al. Midbrain glutamatergic circuit mechanism of resilience to socially transferred allodynia in male mice. Nat Commun. 2024;15:4947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang MM, Geng AQ, Chen K, Wang J, Wang P, Qiu XT, et al. Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron. 2022;110:1993-2008.e6.

  23. Deng H, Wu Y, Gao P, Kong D, Pan C, Xu S, et al. Preoperative pain facilitates postoperative cognitive dysfunction via periaqueductal gray matter-dorsal raphe circuit. Neuroscience. 2023;524:209–19.

    Article  CAS  PubMed  Google Scholar 

  24. Castro DC, Oswell CS, Zhang ET, Pedersen CE, Piantadosi SC, Rossi MA, et al. An endogenous opioid circuit determines state-dependent reward consumption. Nature. 2021;598:646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang XY, Jia WB, Xu X, Chen R, Wang LB, Su XJ, et al. A glutamatergic DRN-VTA pathway modulates neuropathic pain and comorbid anhedonia-like behavior in mice. Nat Commun. 2023;14:5124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu D, Hu SW, Wang D, Zhang Q, Zhang X, Ding HL, et al. An ascending excitatory circuit from the dorsal raphe for sensory modulation of pain. J Neurosci. 2024;44:e0869232023.

  27. Commons KG. Dorsal raphe organization. J Chem Neuroanat. 2020;110:101868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T, Nakamura KC, et al. Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol. 2010;518:668–86.

    Article  CAS  PubMed  Google Scholar 

  29. Li C, Sugam JA, Lowery-Gionta EG, McElligott ZA, McCall NM, Lopez AJ, et al. Mu Opioid receptor modulation of dopamine neurons in the periaqueductal gray/dorsal raphe: a role in regulation of pain. Neuropsychopharmacology. 2016;41:2122–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pomrenze MB, Cardozo Pinto DF, Neumann PA, Llorach P, Tucciarone JM, Morishita W, et al. Modulation of 5-HT release by dynorphin mediates social deficits during opioid withdrawal. Neuron. 2022;110:4125–43.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paquelet GE, Carrion K, Lacefield CO, Zhou P, Hen R, Miller BR. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron. 2022;110:2664–79.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dölen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature. 2013;501:179–84.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Matthews GA, Nieh EH, Vander Weele CM, Halbert SA, Pradhan RV, Yosafat AS, et al. Dorsal raphe dopamine neurons represent the experience of social isolation. Cell. 2016;164:617–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li L, Zhang LZ, He ZX, Ma H, Zhang YT, Xun YF, et al. Dorsal raphe nucleus to anterior cingulate cortex 5-HTergic neural circuit modulates consolation and sociability. eLife. 2021;10:e67638.

  35. Zhang G, Cui M, Ji R, Zou S, Song L, Fan B, et al. Neural and molecular investigation into the paraventricular thalamic-nucleus accumbens circuit for pain sensation and non-opioid analgesia. Pharmacol Res. 2023;191:106776.

    Article  CAS  PubMed  Google Scholar 

  36. Ma Y, Zhao W, Chen D, Zhou D, Gao Y, Bian Y, et al. Disinhibition of mesolimbic dopamine circuit by the lateral hypothalamus regulates pain sensation. J Neurosci. 2023;43:4525–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rein B, Jones E, Tuy S, Boustani C, Johnson JA, Malenka RC, et al. Protocols for the social transfer of pain and analgesia in mice. STAR Protoc. 2022;3:101756.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bruschetta G, Jin S, Liu Z-W, Kim JD, Diano S. MC4R signaling in dorsal raphe nucleus controls feeding, anxiety, and depression. Cell Rep. 2020;33:108267.

    Article  CAS  PubMed  Google Scholar 

  39. Bhorkar AA, Dandekar MP, Nakhate KT, Subhedar NK, Kokare DM. Involvement of the central melanocortin system in the effects of caffeine on anxiety-like behavior in mice. Life Sci. 2014;95:72–80.

    Article  CAS  PubMed  Google Scholar 

  40. Zhai X, Ai L, Chen D, Zhou D, Han Y, Ji R, et al. Multiple integrated social stress induces depressive-like behavioral and neural adaptations in female C57BL/6J mice. Neurobiol Dis. 2024;190:106374.

    Article  PubMed  Google Scholar 

  41. Nectow AR, Schneeberger M, Zhang H, Field BC, Renier N, Azevedo E, et al. Identification of a brainstem circuit controlling feeding. Cell. 2017;170:429–42.e11.

    Article  CAS  PubMed  Google Scholar 

  42. Xie L, Wu H, Chen Q, Xu F, Li H, Xu Q, et al. Divergent modulation of pain and anxiety by GABAergic neurons in the ventrolateral periaqueductal gray and dorsal raphe. Neuropsychopharmacology. 2023;48:1509–19.

    Article  CAS  PubMed  Google Scholar 

  43. Wang QP, Nakai Y. The dorsal raphe: an important nucleus in pain modulation. Brain Res Bull. 1994;34:575–85.

    Article  CAS  PubMed  Google Scholar 

  44. Sagheddu C, Aroni S, De Felice M, Lecca S, Luchicchi A, Melis M, et al. Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Neuropharmacology. 2015;97:383–93.

    Article  CAS  PubMed  Google Scholar 

  45. Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science. 2011;334:693–7.

    Article  CAS  PubMed  Google Scholar 

  46. Fetcho RN, Hall BS, Estrin DJ, Walsh AP, Schuette PJ, Kaminsky J, et al. Regulation of social interaction in mice by a frontostriatal circuit modulated by established hierarchical relationships. Nat Commun. 2023;14:2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lindzey G, Winston H, Manosevitz M. Social dominance in inbred mouse strains. Nature. 1961;191:474–6.

    Article  CAS  PubMed  Google Scholar 

  48. Desjardins C, Maruniak JA, Bronson FH. Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science. 1973;182:939–41.

    Article  CAS  PubMed  Google Scholar 

  49. Park J, Ha S, Shin HS, Jeong J. Experience of a hierarchical relationship between a pair of mice specifically influences their affective empathy toward each other. Genes Brain Behav. 2022;21:e12810.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fan Z, Zhu H, Zhou T, Wang S, Wu Y, Hu H. Using the tube test to measure social hierarchy in mice. Nat Protoc. 2019;14:819–31.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou T, Zhu H, Fan Z, Wang F, Chen Y, Liang H, et al. History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science. 2017;357:162–8.

    Article  CAS  PubMed  Google Scholar 

  52. Okaty BW, Commons KG, Dymecki SM. Embracing diversity in the 5-HT neuronal system. Nat Rev Neurosci. 2019;20:397–424.

    Article  CAS  PubMed  Google Scholar 

  53. Marcinkiewcz CA, Mazzone CM, D’Agostino G, Halladay LR, Hardaway JA, DiBerto JF, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature. 2016;537:97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Natarajan R, Forrester L, Chiaia NL, Yamamoto BK. Chronic-stress-induced behavioral changes associated with subregion-selective serotonin cell death in the dorsal raphe. J Neurosci. 2017;37:6214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nishitani N, Nagayasu K, Asaoka N, Yamashiro M, Andoh C, Nagai Y, et al. Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology. 2019;44:721–32.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang J, Tan S, Feng X, Peng Y, Long C, Yang L. Distinct ACC neural mechanisms underlie authentic and transmitted anxiety induced by maternal separation in mice. J Neurosci. 2023;43:8201–18.

  57. Li YJ, Du WJ, Liu R, Zan GY, Ye BL, Li Q, et al. Paraventricular nucleus-central amygdala oxytocinergic projection modulates pain-related anxiety-like behaviors in mice. CNS Neurosci Ther. 2023;29:3493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported by the STI2030-Major Projects (2021ZD0203100), National Natural Science Foundation of China (31970937, 82271255 and 82301413), Jiangsu Province Innovative and Entrepreneurial Team Program, Jiangsu Province Key R&D Program Social Development Project (BE2023690), China Postdoctoral Science Foundation (2023M732973), Science and Technology Department of Jiangsu Province (BK20210908, BK20241956), Xuzhou Medical University start-up grant for excellent scientist (D2020053, RC20552033, D2022005) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22_2932, KYCX22_2918, KYCX23_2998 and KYCX23_2952). We thank Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HXZ, LA; Methodology: LA, YH; Investigation: LA, YH, TG, SS, XJZ, RJ, YZ, DDC, AX, WXZ, ZW, MRZ, JXY; Funding acquisition: HXZ, LZS, JLC, LA, YH, XJZ; Project administration: HXZ, LA; Supervision: HXZ, LZS, AKH; Writing – original draft: HXZ, LA; Writing – review & editing: HXZ, LA; LA, YH, TG, and SS contributed equally to this work.

Corresponding authors

Correspondence to Jun-li Cao, Ling-zhen Song or Hong-xing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, L., Han, Y., Ge, T. et al. Dorsal raphe GABA-ergic neurons regulate the susceptibility to social transfer of pain in mice. Acta Pharmacol Sin 46, 1892–1904 (2025). https://doi.org/10.1038/s41401-025-01494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01494-x

Keywords

This article is cited by

Search

Quick links