Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endothelial histone deacetylase 9 promotes diabetic retinopathy in mice by regulating endothelial–mesenchymal transition

Abstract

Diabetic retinopathy (DR) is a common and specific microvascular complication of diabetes and the leading cause of blindness in working-age adults. Endothelial-mesenchymal transition (EndoMT) underlies various chronic vascular diseases, while histone deacetylase 9 (HDAC9) is involved in the pathological process of cardiovascular diseases, cerebrovascular diseases, autoimmune diseases, and breast cancer. Recent evidence has shown that HDAC9 promotes EndoMT, thereby affecting the progression of atherosclerotic disease. In this study, we investigated the critical role of HDAC9 in DR and the underlying mechanism. DR model was established in mice by injecting streptozotocin (STZ, 50 mg/kg) for 5 consecutive days. Blood glucose was monitored regularly and DR experiments were performed 12 weeks after modeling. We showed that the expression levels of HDAC9 were significantly elevated in the vitreous fluid of diabetic patients and the retinal endothelial cells of DR model mice. Knockdown of endothelial HDAC9 reduced EndoMT and alleviated DR pathology in vivo, whereas overexpression of HDAC9 exacerbated EndoMT in DR model mice. To elucidate the downstream target genes of HDAC9 implicated in DR, we conducted integrated ChIP-seq and RNA-seq analysis of the retina in STZ-induced retinopathy and established that HDAC9 was involved in the transcriptional regulation of annexin A2 (ANXA2). We demonstrated that HDAC9 was bound to the promoter region of ANXA2, leading to the downregulation of ANXA2 expression in high glucose-treated human retinal microvascular endothelial cells and STZ-induced DR model mice. Overexpression of ANXA2 significantly reduced the EndoMT process in STZ-induced DR model mice. Collectively, our results demonstrate that HDAC9 promotes EndoMT by regulating ANXA2 transcription, thereby disrupting vascular homeostasis during DR. This study sheds light on the roles of HDAC9 and ANXA2 in DR pathology and provides a theoretical foundation for the potential therapeutic strategies to target DR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Endothelial HDAC9 is up-regulated in DR.
Fig. 2: Loss of endothelial HDAC9 leads to decreased EndoMT level in STZ-induced retinopathy.
Fig. 3: Overexpression of endothelial HDAC9 leads to increased EndoMT level in STZ-induced retinopathy.
Fig. 4: ChIP-seq analysis of the retina in STZ-induced retinopathy.
Fig. 5: HDAC9 suppresses the transcriptional regulation of ANXA2 in HRECs.
Fig. 6: HDAC9 suppresses the transcriptional regulation of Anxa2 in STZ-induced retinopathy.
Fig. 7: Endothelial ANXA2 overexpression leads to decreased EndoMT level in STZ-induced retinopathy.

Similar content being viewed by others

References

  1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.

    Article  CAS  PubMed  Google Scholar 

  2. Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol. 2020;11:564077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. 2021;128:1580–91.

    Article  PubMed  Google Scholar 

  4. Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, et al. Human vitreous in proliferative diabetic retinopathy: characterization and translational implications. Prog Retin Eye Res. 2019;72:100756.

    Article  CAS  PubMed  Google Scholar 

  5. Fong DS, Girach A, Boney A. Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 2007;27:816–24.

    Article  PubMed  Google Scholar 

  6. Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19:1816.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267.

    PubMed  PubMed Central  Google Scholar 

  8. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, et al. miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes. 2011;60:2975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao Y, Feng B, Chen S, Chu Y, Chakrabarti S. Mechanisms of endothelial to mesenchymal transition in the retina in diabetes. Invest Ophthalmol Vis Sci. 2014;55:7321–31.

    Article  CAS  PubMed  Google Scholar 

  10. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    Article  CAS  PubMed  Google Scholar 

  11. van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res. 2012;347:177–86.

    Article  PubMed  Google Scholar 

  12. Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases. Physiol Rev. 2019;99:1281–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Magrini E, Villa A, Angiolini F, Doni A, Mazzarol G, Rudini N, et al. Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization. J Clin Invest. 2014;124:4335–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Madar S, Goldstein I, Rotter V. Cancer associated fibroblasts’-more than meets the eye. Trends Mol Med. 2013;19:447–53.

    Article  CAS  PubMed  Google Scholar 

  15. Evrard SM, Lecce L, Michelis KC, Nomura-Kitabayashi A, Pandey G, Purushothaman KR, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen PY, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015;125:4514–28.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mina SG, Huang P, Murray BT, Mahler GJ. The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction. Biomicrofluidics. 2017;11:044104.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med. 2016;5:45.

  19. Takagaki Y, Lee SM, Dongqing Z, Kitada M, Kanasaki K, Koya D. Endothelial autophagy deficiency induces IL6-dependent endothelial mesenchymal transition and organ fibrosis. Autophagy. 2020;16:1905–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–61.

    Article  CAS  PubMed  Google Scholar 

  21. Kadiyala CS, Zheng L, Du Y, Yohannes E, Kao HY, Miyagi M, et al. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem. 2012;287:25869–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin Z, Wei W, Huynh H, Wan Y. HDAC9 inhibits osteoclastogenesis via mutual suppression of PPARgamma/RANKL signaling. Mol Endocrinol. 2015;29:730–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Yang Y, Yang F, Liu X, Zhan P, Wu J, et al. HDAC9-mediated epithelial cell cycle arrest in G2/M contributes to kidney fibrosis in male mice. Nat Commun. 2023;14:3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lecce L, Xu Y, V’Gangula B, Chandel N, Pothula V, Caudrillier A, et al. Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. J Clin Invest. 2021;131:e131178.

  25. Zhu JY, Yao W, Ni XS, Yao MD, Bai W, Yang TJ, et al. Hyperglycemia-regulated tRNA-derived fragment tRF-3001a propels neurovascular dysfunction in diabetic mice. Cell Rep Med. 2023;4:101209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176:1248–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alva JA, Zovein AC, Monvoisin A, Murphy T, Salazar A, Harvey NL, et al. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev Dyn. 2006;235:759–67.

    Article  CAS  PubMed  Google Scholar 

  28. Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JM, et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2015;308:G807–30.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cao Q, Rong S, Repa JJ, St Clair R, Parks JS, Mishra N. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol. 2014;34:1871–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan K, Cao Q, Reilly CM, Young NL, Garcia BA, Mishra N. Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity. J Biol Chem. 2011;286:28833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salgado E, Bian X, Feng A, Shim H, Liang Z. HDAC9 overexpression confers invasive and angiogenic potential to triple-negative breast cancer cells via modulating microRNA-206. Biochem Biophys Res Commun. 2018;503:1087–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138:1019–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Das S, Natarajan R. HDAC9: an inflammatory link in atherosclerosis. Circ Res. 2020;127:824–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neumann P, Jae N, Knau A, Glaser SF, Fouani Y, Rossbach O, et al. The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun. 2018;9:237.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Yang R, Bai W, Xu X, Bi F, Zhu M, et al. Exploring the role of orexin B-sirtuin 1-HIF-1alpha in diabetes-mellitus induced vascular endothelial dysfunction and associated myocardial injury in rats. Life Sci. 2020;254:117041.

    Article  CAS  PubMed  Google Scholar 

  36. Chatterjee TK, Basford JE, Yiew KH, Stepp DW, Hui DY, Weintraub NL. Role of histone deacetylase 9 in regulating adipogenic differentiation and high fat diet-induced metabolic disease. Adipocyte. 2014;3:333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McKinsey TA, Zhang CL, Olson EN. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev. 2001;11:497–504.

    Article  CAS  PubMed  Google Scholar 

  38. Li C, Yu J, Liao D, Su X, Yi X, Yang X, et al. Annexin A2: the missing piece in the puzzle of pathogen-induced damage. Virulence. 2023;14:2237222.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China to Hai-bin Dai (82173789, 81573402, and 81773700). The authors thank the Prof Wei-wei Hu, Zhejiang University, and Dr Wen-lu Li, Massachusetts General Hospital for help with preparing the manuscript. The authors thank Shuang-shuang Liu and San-hua Fang from the Core Facilities, Zhejiang University School of Medicine for their technical support in our experiment.

Author information

Authors and Affiliations

Authors

Contributions

YB and ZXS conceived and designed the study. YB performed the experiments with assistance from ZXS, HRL, TFW, YJD, and Yan-hong Wang. Yi-hao Wang, LLH, TZ, and WH conducted data collation and statistical analysis. ZTS, JY, and YB collected clinical samples. YB drafted the original manuscript under the guidance of HBD. HBD and GXW are supervising this experiment. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Gong-xiong Wu or Hai-bin Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bei, Y., Shen, Zx., Lin, Hr. et al. Endothelial histone deacetylase 9 promotes diabetic retinopathy in mice by regulating endothelial–mesenchymal transition. Acta Pharmacol Sin 46, 2213–2224 (2025). https://doi.org/10.1038/s41401-025-01523-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01523-9

Keywords

This article is cited by

Search

Quick links