Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Identification of indoles as potential endogenous ligands of ERRγ and their modulation on drug binding

Abstract

Estrogen-related receptor γ (ERRγ) is an orphan nuclear receptor in the ERR subfamily that plays a crucial role in regulating energy metabolism. To date, no endogenous ligand has been identified for ERRγ, posing a challenge for developing targeted therapeutics. Here, we identified that indole and skatole produced by the gut microbiota are potential endogenous ligands of ERRγ using biochemical, cellular, structural, and computational approaches. Indole and skatole increased ERRγ thermostability and directly bound to the ligand-binding domain (LBD) with a Kd of approximately 1–2 μM but had no significant effect or weak inhibitory activity on the transcriptional efficiency. However, RNA sequencing revealed that ERRγ could coregulate several lipid metabolism- and immune-related genes with indole, suggesting a role for ERRγ in the indole pathway. Interestingly, indole and skatole differentially attenuated the activities of ERRγ ligands: they both neutralized the agonistic activity of GSK4716, while indole reduced the antagonistic activity of 4-hydroxytamoxifen (4OHT) and GSK5182, and skatole affected the agonistic activity of endocrine disruptor bisphenol A (BPA). We further screened additional indole metabolites and analogs, resolved the complex structures of ERRγ-LBD with these compounds, and conducted molecular dynamics simulations to determine their binding site and elucidate their binding mechanisms. This study identified potential endogenous ligands of ERRγ, suggesting a novel link between the energy metabolism regulation and the indole pathway. Our findings highlight the need to consider endogenous ligands when designing and optimizing ERRγ-targeted drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional characterization of compounds with indole rings.
Fig. 2: ERRγ cellular activity with or without compound treatment evaluated via the luciferase reporter-based transcription assay.
Fig. 3: The interferences of indole and skatole on drug binding as determined with luciferase assays with the ERRE.
Fig. 4: Compounds bind to ERRγ-LBD but have a limited structural impact on its constitutively active conformation.

Data availability

Coordinates and structure factors for ERRγ in complex with indole, 6NI, 5NI, 4028691, and 4034496 have been deposited in the RCSB protein data bank with ID 9KND, 9KNC, 9KNE, 9KNF, and 9KNG, respectively. Raw diffraction data are available on the Guangzhou Institutes of Biomedicine and Health Supercomputing Center server.

References

  1. Giguere V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev. 2008;29:677–96.

    Article  CAS  PubMed  Google Scholar 

  2. Takacs M, Petoukhov MV, Atkinson RA, Roblin P, Ogi FX, Demeler B, et al. The asymmetric binding of PGC-1alpha to the ERRalpha and ERRgamma nuclear receptor homodimers involves a similar recognition mechanism. PLoS One. 2013;8:e67810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang L, Zuercher WJ, Consler TG, Lambert MH, Miller AB, Orband-Miller LA, et al. X-ray crystal structures of the estrogen-related receptor-gamma ligand binding domain in three functional states reveal the molecular basis of small molecule regulation. J Biol Chem. 2006;281:37773–81.

    Article  CAS  PubMed  Google Scholar 

  4. Chen L, Wu M, Zhang S, Tan W, Guan M, Feng L, et al. Estrogen-related receptor gamma regulates hepatic triglyceride metabolism through phospholipase A2 G12B. FASEB J. 2019;33:7942–52.

    Article  CAS  PubMed  Google Scholar 

  5. Guan M, Qu L, Tan W, Chen L, Wong CW. Hepatocyte nuclear factor-4 alpha regulates liver triglyceride metabolism in part through secreted phospholipase A2 GXIIB. Hepatology. 2011;53:458–66.

    Article  CAS  PubMed  Google Scholar 

  6. Huss JM, Garbacz WG, Xie W. Constitutive activities of estrogen-related receptors: transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim Biophys Acta (BBA) Mol Basis Dis. 2015;1852:1912–27.

    Article  CAS  Google Scholar 

  7. Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 2007;5:345–56.

    Article  CAS  PubMed  Google Scholar 

  8. Schilit SL, Currall BB, Yao R, Hanscom C, Collins RL, Pillalamarri V, et al. Estrogen-related receptor gamma implicated in a phenotype including hearing loss and mild developmental delay. Eur J Hum Genet. 2016;24:1622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zuercher WJ, Gaillard S, Orband-Miller LA, Chao EY, Shearer BG, Jones DG, et al. Identification and structure-activity relationship of phenolic acyl hydrazones as selective agonists for the estrogen-related orphan nuclear receptors ERRbeta and ERRgamma. J Med Chem. 2005;48:3107–9.

    Article  CAS  PubMed  Google Scholar 

  10. Lim J, Park J, Lee W, Choi HJ. GSK4716 enhances 5-HT1AR expression by glucocorticoid receptor signaling in hippocampal HT22 cells. Neurol Res. 2024;46:398–405.

    Article  CAS  PubMed  Google Scholar 

  11. Xu S, Mao L, Ding P, Zhuang X, Zhou Y, Yu L, et al. 1-Benzyl-4-phenyl-1H-1,2,3-triazoles improve the transcriptional functions of estrogen-related receptor gamma and promote the browning of white adipose. Bioorg Med Chem. 2015;23:3751–60.

    Article  CAS  PubMed  Google Scholar 

  12. Thouennon E, Delfosse V, Bailly R, Blanc P, Boulahtouf A, Grimaldi M, et al. Insights into the activation mechanism of human estrogen-related receptor gamma by environmental endocrine disruptors. Cell Mol Life Sci. 2019;76:4769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coward P, Lee D, Hull MV, Lehmann JM. 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor gamma. Proc Natl Acad Sci USA. 2001;98:8880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim JH, Choi YK, Byun JK, Kim MK, Kang YN, Kim SH, et al. Estrogen-related receptor gamma is upregulated in liver cancer and its inhibition suppresses liver cancer cell proliferation via induction of p21 and p27. Exp Mol Med. 2016;48:e213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chao EY, Collins JL, Gaillard S, Miller AB, Wang L, Orband-Miller LA, et al. Structure-guided synthesis of tamoxifen analogs with improved selectivity for the orphan ERRgamma. Bioorg Med Chem Lett. 2006;16:821–4.

    Article  CAS  PubMed  Google Scholar 

  16. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9:3294.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kunevicius A, Sadauskas M, Raudyte J, Meskys R, Burokas A. Unraveling the dynamics of host-microbiota indole metabolism: an investigation of indole, indolin-2-one, isatin, and 3-hydroxyindolin-2-one. Molecules 2024;29:993.

  18. Li X, Zhang B, Hu Y, Zhao Y. New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front Pharmacol. 2021;12:769501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Li M, Wu W, Hu M, Cheng J, Gao R, et al. Deciphering tryptophan metabolic pathways: insights from molecular docking and microscale thermophoresis on the aryl hydrocarbon receptor binding with 12 microbial tryptophan metabolites. SSRN: https://ssrn.com/abstract=4963183 or https://doi.org/10.2139/ssrn.4963183 2025.

  20. Illes P, Krasulova K, Vyhlidalova B, Poulikova K, Marcalikova A, Pecinkova P, et al. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol Lett. 2020;334:87–93.

    Article  CAS  PubMed  Google Scholar 

  21. Ye X, Li H, Anjum K, Zhong X, Miao S, Zheng G, et al. Dual role of indoles derived from intestinal microbiota on human health. Front Immunol. 2022;13:903526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41:296–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu F, Wang Q, Li M, Zhou H, Liu K, Zhang K, et al. Aquarium: an automatic data-processing and experiment information management system for biological macromolecular crystallography beamlines. J Appl Crystallogr. 2019;52:472–7.

    Article  CAS  Google Scholar 

  24. Foadi J, Aller P, Alguel Y, Cameron A, Axford D, Owen RL, et al. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2013;69:1617–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D. 2011;67:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr. 2010;66:22–5.

    Article  CAS  PubMed  Google Scholar 

  27. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeLano W. The PyMOL molecular graphics system. Palo Alto, CA: DeLano Scientific LLC 2008.

  30. Case DA, Belfon K, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham III TE, et al. AMBER 2020. University of California; San Francisco: 2020.

  31. Roe DR, Cheatham TE 3rd. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9:3084–95.

    Article  CAS  PubMed  Google Scholar 

  32. Zou J, Li Z, Liu S, Peng C, Fang D, Wan X, et al. Scaffold hopping transformations using auxiliary restraints for calculating accurate relative binding free energies. J Chem Theory Comput. 2021;17:3710–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34:426–44.

    Article  CAS  PubMed  Google Scholar 

  34. Zhen X, Gan Q, Qu L, Dong Y, Pan C, Liu J, et al. ERRgamma-DBD undergoes dimerization and conformational rearrangement upon binding to the downstream site of the DR1 element. Biochem Biophys Res Commun. 2023;656:16–22.

    Article  CAS  PubMed  Google Scholar 

  35. Chiaro CR, Patel RD, Marcus CB, Perdew GH. Evidence for an aryl hydrocarbon receptor-mediated cytochrome p450 autoregulatory pathway. Mol Pharmacol. 2007;72:1369–79.

    Article  CAS  PubMed  Google Scholar 

  36. Wu YY, Xing J, Li XF, Yang YL, Shao H, Li J. Roles of interferon induced protein with tetratricopeptide repeats (IFIT) family in autoimmune disease. Autoimmun Rev. 2023;22:103453.

    Article  CAS  PubMed  Google Scholar 

  37. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8:127–34.

    Article  CAS  PubMed  Google Scholar 

  38. Scholtes C, Giguere V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol. 2022;23:750–70.

    Article  CAS  PubMed  Google Scholar 

  39. Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: a structural perspective. Protein Sci. 2018;27:1876–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tremblay GB, Kunath T, Bergeron D, Lapointe L, Champigny C, Bader JA, et al. Diethylstilbestrol regulates trophoblast stem cell differentiation as a ligand of orphan nuclear receptor ERR. Beta Genes Dev. 2001;15:833–8.

    Article  CAS  PubMed  Google Scholar 

  41. Schupp M, Lazar MA. Endogenous ligands for nuclear receptors: digging deeper. J Biol Chem. 2010;285:40409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lim J, Choi HS, Choi HJ. Estrogen-related receptor gamma regulates dopaminergic neuronal phenotype by activating GSK3beta/NFAT signaling in SH-SY5Y cells. J Neurochem. 2015;133:544–57.

    Article  CAS  PubMed  Google Scholar 

  43. Yin Q, Shi G, Zhu L. Association between gut microbiota and sensorineural hearing loss: a Mendelian randomization study. Front Microbiol. 2023;14:1230125.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kociszewska D, Vlajkovic S. Age-related hearing loss: the link between inflammaging, immunosenescence, and gut dysbiosis. Int J Mol Sci 2022;23:7348.

  45. Bofill A, Jalencas X, Oprea TI, Mestres J. The human endogenous metabolome as a pharmacology baseline for drug discovery. Drug Discov Today. 2019;24:1806–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Lin-bing Qu and Dr San-ling Liu for providing the gene template and the staff members of beamline 17U1 and 19U1 at the National Center for Protein Science Shanghai and the Shanghai Synchrotron Radiation Facility, the People’s Republic of China, for assistance with diffraction data collection. We would also like to thank the support from the Guangzhou Branch of the Supercomputing Center of CAS.

Funding

This work was supported by Guangdong Basic and Applied Basic Research Foundation (2023A1515030039, 2021A1515220013), Queensland-Chinese Academy of Sciences Collaborative Science Fund (188GJHZ2023069MI), Guangzhou Basic and Applied Basic Research Foundation (2025A04J5436, 202201010711), State Key Laboratory of Respiratory Disease (SKLRD-Z-202519), the Youth Innovation Promotion Association of CAS (2021357), and Guangdong Provincial Key Laboratory of Biocomputing Grant (2016B030301007).

Author information

Authors and Affiliations

Authors

Contributions

TTX and NW designed the experiments. YYS, HYZ, RC, NW, PD, BLW, YD, and MZS performed the experiments. YYS, HYZ, TTX, JSL, XSW, YX, and YZ performed the analyses. JSL, TTX edited the manuscript. NW and TTX wrote the manuscript.

Corresponding authors

Correspondence to Jin-song Liu, Na Wang or Ting-ting Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuai, Yy., Zhang, Hy., Chen, R. et al. Identification of indoles as potential endogenous ligands of ERRγ and their modulation on drug binding. Acta Pharmacol Sin 46, 2574–2582 (2025). https://doi.org/10.1038/s41401-025-01550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01550-6

Keywords

Search

Quick links